Wealth Mobility in the United States Empirical Evidence from the PSID

Christophe Van Langenhove

9 July, 2025

- 1 Introduction
- 2 Data & methods
- 3 Inter-generational (family-level) mobility
- 4 Intra-generational (individual-level) mobility
- **5** Within-family interdependence
- 6 Conclusion

1. Introduction

 Research on wealth inequality has expanded considerably, while studies on wealth mobility remain relatively scarce

- Research on wealth inequality has expanded considerably, while studies on wealth mobility remain relatively scarce
- United States: Charles & Hurst (2003), Conley & Glauber (2008), Klevmarken et al. (2003), Menchik (1979), Pfeffer & Killewald (2018), Shiro et al. (2022)

- Research on wealth inequality has expanded considerably, while studies on wealth mobility remain relatively scarce
- United States: Charles & Hurst (2003), Conley & Glauber (2008), Klevmarken et al. (2003), Menchik (1979), Pfeffer & Killewald (2018), Shiro et al. (2022)
- Nordic countries: Adermon et al. (2018), Audoly et al. (2024), Black et al. (2020), Boserup et al. (2017), Fagereng et al. (2021), Hubmer et al. (2024)

- Research on wealth inequality has expanded considerably, while studies on wealth mobility remain relatively scarce
- United States: Charles & Hurst (2003), Conley & Glauber (2008), Klevmarken et al. (2003), Menchik (1979), Pfeffer & Killewald (2018), Shiro et al. (2022)
- Nordic countries: Adermon et al. (2018), Audoly et al. (2024), Black et al. (2020), Boserup et al. (2017), Fagereng et al. (2021), Hubmer et al. (2024)
- UK & Australia: Gregg & Kanabar (2023), Levell & Sturrock (2023) and Siminsky & Yu (2022)

Relevance of data on wealth mobility?

 Informative for academic and popular debates on wealth taxation and estate taxation

- Informative for academic and popular debates on wealth taxation and estate taxation
 - The negative externalities of high wealth inequality may be more limited when wealth mobility is high as well

- Informative for academic and popular debates on wealth taxation and estate taxation
 - The negative externalities of high wealth inequality may be more limited when wealth mobility is high as well
- Input to Bewley-Huggett-Aiyagari heterogeneous agent models of the US wealth distribution

- Informative for academic and popular debates on wealth taxation and estate taxation
 - The negative externalities of high wealth inequality may be more limited when wealth mobility is high as well
- Input to Bewley-Huggett-Aiyagari heterogeneous agent models of the US wealth distribution
 - Do existing models of the US wealth distribution also generate realistic wealth mobility outcomes?

- Informative for academic and popular debates on wealth taxation and estate taxation
 - The negative externalities of high wealth inequality may be more limited when wealth mobility is high as well
- Input to Bewley-Huggett-Aiyagari heterogeneous agent models of the US wealth distribution
 - Do existing models of the US wealth distribution also generate realistic wealth mobility outcomes?
 - What are the driving forces behind cross-country differences in wealth mobility outcomes?

• Data from the Panel Study of Income Dynamics (PSID)

- Data from the Panel Study of Income Dynamics (PSID)
- Descriptive evidence on US relative wealth mobility

- Data from the Panel Study of Income Dynamics (PSID)
- Descriptive evidence on US relative wealth mobility

Three research questions:

 Inter-generational wealth mobility: wealth ranks of children versus those of their parents (two-generational) and grandparents (three-generational)

- Data from the Panel Study of Income Dynamics (PSID)
- Descriptive evidence on US relative wealth mobility

Three research questions:

- Inter-generational wealth mobility: wealth ranks of children versus those of their parents (two-generational) and grandparents (three-generational)
- Intra-generational wealth mobility: wealth ranks of individuals over their lifecycle (working life and older age)

- Data from the Panel Study of Income Dynamics (PSID)
- Descriptive evidence on US relative wealth mobility

Three research questions:

- Inter-generational wealth mobility: wealth ranks of children versus those of their parents (two-generational) and grandparents (three-generational)
- Intra-generational wealth mobility: wealth ranks of individuals over their lifecycle (working life and older age)
- Within-family wealth rank interdependence: do changes in individuals' wealth ranks correlate with those of their parents over the same period?

2. Data & methods

 Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021

- Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021
- Waves in 1984, 1989, 1994 and 1999-2021 include questions on assets and debt (and a wealth estimate)

- Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021
- Waves in 1984, 1989, 1994 and 1999-2021 include questions on assets and debt (and a wealth estimate)
- By contrast, prior to 1984: no direct wealth estimate is available in the PSID

- Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021
- Waves in 1984, 1989, 1994 and 1999-2021 include questions on assets and debt (and a wealth estimate)
- By contrast, prior to 1984: no direct wealth estimate is available in the PSID
 - Main housing values are commonly used to proxy total wealth (e.g. Pfeffer & Killewald, 2018; Chetty et al., 2020)

- Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021
- Waves in 1984, 1989, 1994 and 1999-2021 include questions on assets and debt (and a wealth estimate)
- By contrast, prior to 1984: no direct wealth estimate is available in the PSID
 - Main housing values are commonly used to proxy total wealth (e.g. Pfeffer & Killewald, 2018; Chetty et al., 2020)
 - Instead, I estimate a gradient-boosting ML-model which uses additional household-level socio-economic data

- Panel Study of Income Dynamics (PSID): survey data running from 1968 to 2021
- Waves in 1984, 1989, 1994 and 1999-2021 include questions on assets and debt (and a wealth estimate)
- By contrast, prior to 1984: no direct wealth estimate is available in the PSID
 - Main housing values are commonly used to proxy total wealth (e.g. Pfeffer & Killewald, 2018; Chetty et al., 2020)
 - Instead, I estimate a gradient-boosting ML-model which uses additional household-level socio-economic data
 - The ML-proxies significantly outperform the naive proxies used in the literature

mobility

3. Inter-generational (family-level)

 Across two generations (parents-children) and three generations (grandparents-grandchildren)

- Across two generations (parents-children) and three generations (grandparents-grandchildren)
- Two generations: parents' and children's within-cohort wealth ranks are compared at identical lifecycle stages

- Across two generations (parents-children) and three generations (grandparents-grandchildren)
- Two generations: parents' and children's within-cohort wealth ranks are compared at identical lifecycle stages
- Three generations: grandchildren's within-cohort wealth ranks at ages 30-39 versus their grandparents' wealth ranks from age 40

- Across two generations (parents-children) and three generations (grandparents-grandchildren)
- Two generations: parents' and children's within-cohort wealth ranks are compared at identical lifecycle stages
- Three generations: grandchildren's within-cohort wealth ranks at ages 30-39 versus their grandparents' wealth ranks from age 40

Two individual-level wealth rank κ (wealth levels w) series:

- Across two generations (parents-children) and three generations (grandparents-grandchildren)
- Two generations: parents' and children's within-cohort wealth ranks are compared at identical lifecycle stages
- Three generations: grandchildren's within-cohort wealth ranks at ages 30-39 versus their grandparents' wealth ranks from age 40

Two individual-level wealth rank κ (wealth levels w) series:

• κ^{Ψ} (w^{Ψ}) — actual within-cohort wealth ranks (wealth levels) in the post-1984 sample

- Across two generations (parents-children) and three generations (grandparents-grandchildren)
- Two generations: parents' and children's within-cohort wealth ranks are compared at identical lifecycle stages
- Three generations: grandchildren's within-cohort wealth ranks at ages 30-39 versus their grandparents' wealth ranks from age 40

Two individual-level wealth rank κ (wealth levels w) series:

- κ^{Ψ} (w^{Ψ}) actual within-cohort wealth ranks (wealth levels) in the post-1984 sample
- $\hat{\kappa}^{\Omega}$ (\hat{w}^{Ω}) ML-proxy within-cohort wealth ranks (wealth levels) in the full sample (from 1968 onwards)

Key findings:

• Estimated parent-child rank-rank coefficients β range from 0.34 to 0.38 (actual wealth) and from 0.36 to 0.51 (ML-proxy wealth)

Key findings:

- Estimated parent-child rank-rank coefficients β range from 0.34 to 0.38 (actual wealth) and from 0.36 to 0.51 (ML-proxy wealth)
- Parent-child lifecycle bias: the resemblance between parents and their children increases with age (similar to e.g. Pfeffer & Killewald, 2018; Boserup et al., 2017)

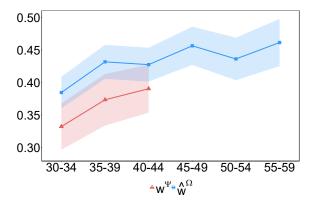


Figure 1: Two-generational rank-rank coefficients β for parents and children at identical lifecycle stages for the pooled dataset.

Key findings:

- **1** Estimated parent-child rank-rank coefficients β range from 0.34 to 0.38 (actual wealth) and from 0.36 to 0.51 (ML-proxy wealth)
- Parent-child lifecycle bias: the resemblance between parents and their children rises with age (similar to e.g. Pfeffer & Killewald, 2018; Boserup et al., 2017)

- **1** Estimated parent-child rank-rank coefficients β range from 0.34 to 0.38 (actual wealth) and from 0.36 to 0.51 (ML-proxy wealth)
- Parent-child lifecycle bias: the resemblance between parents and their children rises with age (similar to e.g. Pfeffer & Killewald, 2018; Boserup et al., 2017)
- 3 Cross-country differences: two-generational wealth mobility in the US is lower than in Norway, Denmark and Australia (0.17–0.27), but similar to the UK and Sweden (0.30–0.39)

- **1** Estimated parent-child rank-rank coefficients β range from 0.34 to 0.38 (actual wealth) and from 0.36 to 0.51 (ML-proxy wealth)
- Parent-child lifecycle bias: the resemblance between parents and their children rises with age (similar to e.g. Pfeffer & Killewald, 2018; Boserup et al., 2017)
- 3 Cross-country differences: two-generational wealth mobility in the US is lower than in Norway, Denmark and Australia (0.17–0.27), but similar to the UK and Sweden (0.30–0.39)
- Time trend: two-generational wealth mobility in the US has declined over time

4. Time trend: two-generational wealth mobility in the US has declined over time.

Variable	Stage	1946-55	1956-65	1966-75	1976-85	1986-95	Pooled
κ^{Ψ}	30-34	-	-	-	0.35	-	0.33
	35-39	-	-	0.34	0.40	-	0.38
	40–44	-	-	0.35	0.46	-	0.38
$\hat{\kappa}^{\Omega}$	30-34	-	-	0.36	0.36	0.38	0.36
	35–39	-	0.38	0.44	0.45	-	0.43
	40-44	-	0.36	0.42	0.49	-	0.42
	45-49	0.47	0.42	0.46	-	-	0.45
	50-54	0.44	0.40	-	-	-	0.43
	55-59	0.47	0.45	-	-	-	0.45
	60–64	0.50	-	-	-	-	0.51

Table 1: Two-generational rank-rank coefficients β across children's age cohorts $\in \Upsilon^{PC}$ for parents and children at identical lifecycle stages.

5. Overall mobility across two generations is driven by mobility at both the bottom and top.

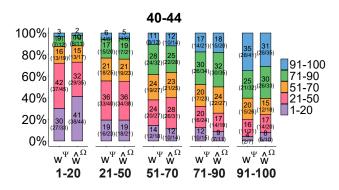


Figure 2: Ex-ante transition matrices $T_{EA}(a)$ between parental and children wealth ranks at lifecycle stage 40-44 for the pooled dataset.

Key findings:

• Grandparent-grandchild inter-generational wealth mobility is higher than parent-child mobility

- Grandparent-grandchild inter-generational wealth mobility is higher than parent-child mobility
- ② Grandchild lifecycle bias: wealth rank resemblance between grandparents and grandchildren is stronger for grandchildren aged 35-39 compared to ages 30-34

Grandchild age 30-34: three-generational rank-rank coefficients of 0.21-0.23 (actual wealth) or 0.27-0.29 (proxy wealth).

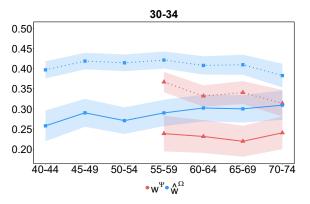


Figure 3: Rank-rank coefficients β for grandparents and grandchildren (solid lines) and parents and children (dotted lines) when (grand)children are aged 30-34.

Grandchild age 35-39: three-generational rank-rank coefficients of 0.30-0.34 (proxy wealth).

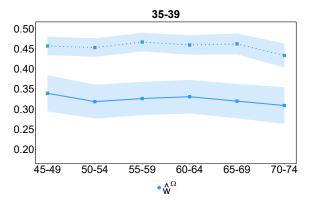


Figure 4: Rank-rank coefficients β for grandparents and grandchildren (solid lines) and parents and children (dotted lines) when (grand)children are aged 35-39.

- Grandparent-grandchild inter-generational wealth mobility is higher than parent-child mobility
- Grandchild lifecycle bias: wealth rank resemblance between grandparents and grandchildren is stronger for grandchildren aged 35-39 compared to ages 30-34

- Grandparent-grandchild inter-generational wealth mobility is higher than parent-child mobility
- Grandchild lifecycle bias: wealth rank resemblance between grandparents and grandchildren is stronger for grandchildren aged 35-39 compared to ages 30-34
- 3 Cross-country differences: three-generational wealth mobility is lower in the US compared to Sweden (0.14–0.17, Adermon et al., 2018) and Denmark (0.16, Boserup et al., 2014)

- Grandparent-grandchild inter-generational wealth mobility is higher than parent-child mobility
- @ Grandchild lifecycle bias: wealth rank resemblance between grandparents and grandchildren is stronger for grandchildren aged 35-39 compared to ages 30-34
- 3 Cross-country differences: three-generational wealth mobility is lower in the US compared to Sweden (0.14–0.17, Adermon et al., 2018) and Denmark (0.16, Boserup et al., 2014)
- Evidence of non-linearity: mobility at the top is significantly higher over three compared to two generations

Steady poor: grandparents and grandchildren in the bottom 20%

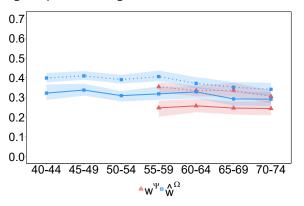


Figure 5: Transition probabilities for grandparents and grandchildren (solid lines) and parents and children (dotted lines) when (grand)children are aged 30-34.

Steady wealthy: grandparents and grandchildren in the top 10%

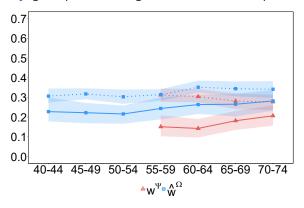


Figure 6: Transition probabilities for grandparents and grandchildren (solid lines) and parents and children (dotted lines) when (grand)children are aged 30-34.

4. Intra-generational (individual-level)

mobility

Intra-generational analysis

• Intra-generational mobility: within-cohort wealth rank trajectories of individuals over the lifecycle

Intra-generational analysis

- Intra-generational mobility: within-cohort wealth rank trajectories of individuals over the lifecycle
- Lifecycle is split into working life (ages 30-54) and older age (ages 55-74); the remainder of this presentation focuses on working life

1 The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)

- **1** The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)
- 2 During older age, the estimated β is significantly higher at 0.76 (even when accounting for differences in lifecycle phase length)

- **1** The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)
- 2 During older age, the estimated β is significantly higher at 0.76 (even when accounting for differences in lifecycle phase length)
- 3 Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution

Mobility during working life: bottom & top

3. Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution.

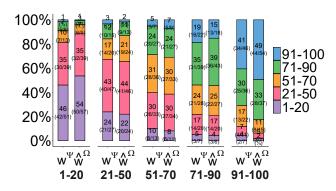


Figure 7: Ex-ante transition matrices during working life (ages 30-54) for the pooled dataset.

Mobility during working life: bottom & top

3. Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution.

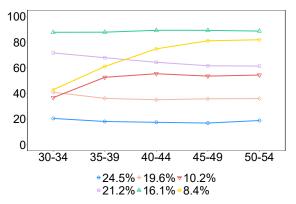


Figure 8: Hierarchical clustering wealth rank trajectories for working life for the pooled dataset based on actual wealth ranks $\kappa^\Psi.$

- **1** The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)
- **2** During older age, the estimated β is significantly higher at 0.76 (even when accounting for different lifecycle phase spans)
- **3** Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution

- **1** The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)
- **2** During older age, the estimated β is significantly higher at 0.76 (even when accounting for different lifecycle phase spans)
- Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution
- 4 Intra-generational wealth mobility in the US ($\beta=0.56$) is significantly lower compared to the Nordic countries ($\beta=0.20-0.22$)

- **1** The rank-rank coefficient β during working life is estimated at 0.56, in line with other research for the United States (Shiro et al., 2022)
- **2** During older age, the estimated β is significantly higher at 0.76 (even when accounting for different lifecycle phase spans)
- Intra-generational wealth mobility occurs both at the bottom and top of the wealth distribution
- 4 Intra-generational wealth mobility in the US ($\beta=0.56$) is significantly lower compared to the Nordic countries ($\beta=0.20-0.22$)
- Intra-generational wealth mobility occurs primarily between ages 30 and 39

Mobility during working life: timing

5. Intra-generational wealth mobility occurs primarily between ages 30 and 39.

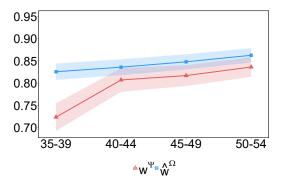


Figure 9: Rolling window analysis for rank-rank coefficient β .

Mobility during working life: time trend

6. Intra-generational wealth mobility has declined at the top over time.

Cohort	Poor	Groups	(%)	Wealthy Groups (%)			β
	Steady	Past	New	Steady	Past	New	
Pooled	9.2	3.8	3.3	4.4	2.8	2.4	0.56
1946-55	9.8	3.6	2.6	3.7	3.7	3.9	0.56
1956-65	9.4	3.2	3.7	4.3	2.6	1.7	0.56
1966–75	8.1	5.7	3.5	5.5	1.8	1.5	0.57

Table 2: Fraction of individuals belonging to each of the discretionary groups (in %) and rank-rank coefficients β across cohorts $\in \Upsilon^{WL}$ based on actual wealth ranks κ^{Ψ} .

Correlation between individuals' (within-cohort) wealth rank changes and those of their parents *over the same historical time period*?

Correlation between individuals' (within-cohort) wealth rank changes and those of their parents *over the same historical time period*?

Individuals experiencing upward or downward mobility (in their cohort) are likely to have parents facing similar mobility (in their own cohort)

Correlation between individuals' (within-cohort) wealth rank changes and those of their parents *over the same historical time period*?

Individuals experiencing upward or downward mobility (in their cohort) are likely to have parents facing similar mobility (in their own cohort)

 Risk-sharing across generations within families through inter-generational transfers (possibly in-kind)

Correlation between individuals' (within-cohort) wealth rank changes and those of their parents *over the same historical time period*?

Individuals experiencing upward or downward mobility (in their cohort) are likely to have parents facing similar mobility (in their own cohort)

- Risk-sharing across generations within families through inter-generational transfers (possibly in-kind)
- 2 Exposure to the same sources of idiosyncratic risk (e.g. specific businesses, housing areas, sectors of employment, etc.)

Downward mobility from the top: individuals starting working life in the top 10% but dropping to the bottom 70%

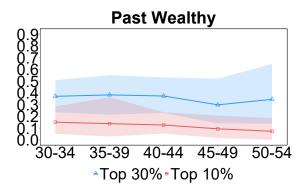


Figure 10: Interdependence between individuals' and their parents' wealth rank trajectories based on actual wealth ranks κ^{Ψ} .

Upward mobility to the top: individuals starting working life in the bottom 70% but rising to the top 10%

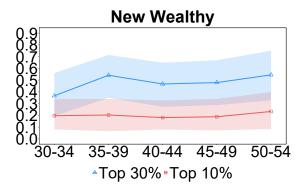


Figure 11: Interdependence between individuals' and their parents' wealth rank trajectories based on actual wealth ranks κ^{Ψ} .

6. Conclusion

Conclusion

- Extensive descriptive evidence on US wealth mobility using the Panel Study of Income Dynamics (PSID)
- Empirical mobility moments are particularly useful for the heterogeneous agent macro literature
- Overall: US wealth mobility has declined over time and is lower compared to most other countries with available data
- Positive interdependence between individuals' wealth rank trajectories and those of their parents