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Nederlandstalige samenvatting

Dit doctoraatsonderzoek bestudeert de vermogensongelijkheid en vermogensmobiliteit in de
Verenigde Staten. Het onderzoek bestaat uit drie hoofdstukken.

In hoofdstuk 1 gebruik ik data uit de Panel Study of Income Dynamics (PSID) om intergen-
erationele en intragenerationele vermogensmobiliteit in de Verenigde Staten te analyseren.
Methodologisch vergelijk ik de vermogensdynamiek in de PSID met die in de Survey of Con-
sumer Finances (SCF). De PSID onderschat de ongelijkheid aan de top van de vermogensverdel-
ing vergeleken met andere cross-sectionele datasets, maar is geschikt voor het bestuderen
van vermogensmobiliteit over de volledige verdeling. Op basis van de gevalideerde data
behandel ik vier onderzoeksvragen. Ten eerste: wat is het niveau van relatieve intergener-
ationele vermogensmobiliteit in de VS? Ten tweede: hoe groot is de intragenerationele ver-
mogensmobiliteit? Ten derde: bestaat er interdependentie in vermogensrangen over gener-
aties, i.e. vertonen de veranderingen in de vermogenspositie van individuen binnen een co-
hort gelijkenissen met die van hun ouders over dezelfde periode? En ten vierde: wat zijn
de drijfveren achter intragenerationele vermogensmobiliteit? Deze analyses leveren een rijk
geheel van empirische vermogensmobiliteitsmomenten op die relevant zijn voor de calibratie
van heterogene agentenmodellen. Bovendien genereren ze meerdere nieuwe inzichten. Ten
eerste ontwikkel ik een gradient boosting machine learning-model om vermogensrangen van
gezinnen tot 1969 te benaderen. Deze benadering presteert aanzienlijk beter dan de gang-
bare proxies gebaseerd op woningbezit. Ik stel vast dat de gelijkenis in vermogensrang tussen
(groot)ouders en (klein)kinderen toeneemt met leeftijd, dat intergenerationele mobiliteit in de
tijd is afgenomen, en dat de Verenigde Staten lagere mobiliteit kennen dan de meeste andere
landen waarvoor vergelijkbare data beschikbaar zijn. Ten tweede blijkt intragenerationele mo-
biliteit zich vooral voor te doen tussen de leeftijden van 30 en 39, en te zijn afgenomen aan de
top van de verdeling. De mobiliteit is bovendien aanzienlijk lager dan in de Scandinavische
landen. Verschillen in mobiliteit houden verband met schenkingen of erfenissen, ondernemer-
schap, arbeidsinkomen, gezondheid en niet-hypothecaire schulden. Ten derde vind ik posi-
tieve interdependentie tussen de vermogensrangpaden van individuen en die van hun ouders
over dezelfde historische periode.

In hoofdstuk 2 gebruik ik opnieuw de PSID om het spaargedrag van Amerikaanse gezin-
nen over de vermogensverdeling te analyseren. Voor het schatten van de spaarquote maak
ik gebruik van twee complementaire schattingsmethode: de cross-sectionele methode en de
geaggregeerde methode. Ik identificeer vier empirische patronen. Ten eerste stijgen de totale
spaarquota uit arbeidsinkomen en nieuwe middelen (flow-based saving rates) met de vermo-
gensrang, terwijl de spaarquota uit vermogen en total middelen (stock-based saving rates) re-
latief stabiel blijven of slechts gematigd toenemen. Ten tweede heeft vermogensmobiliteit een
belangrijke invloed op deze patronen: hoewel de impact van mobiliteit op spaarquota positief

XV



is volgens de cross-sectionele methode, is ze voor de meeste delen van de verdeling negatief
binnen de geaggregeerde schattingsmethode. Dit verschil hangt samen met de manier waarop
beide methodes omgaan met mobiliteit: terwijl de cross-sectionele methode alle huishoudens
binnen een vermogensdeciel gelijkaardig weegt, kent de geaggregeerde methode meer gewicht
toe aan huishoudens die dalen in vermogensrang. Ten derde stel ik vast dat de synthetische
methode (die vaak in de literatuur wordt gebruikt) de spaarquota tot het 80e percentiel sys-
tematisch overschat, maar deze voor de top 20% onderschat. Ten vierde blijkt dat gezinnen
hoger in de vermogensverdeling in toenemende mate sparen door het aanhouden van activa
die in waarde stijgen. Passief sparen via intergenerationele overdrachten komt frequenter voor
bij rijkere gezinnen, maar blijft beperkt in omvang. De empirische spaargedragsmomenten
in hoofdstuk 2 zijn relevant voor heterogene agentenmodellen die de Amerikaanse vermo-
gensverdeling willen repliceren.

In hoofdstuk 3 bestudeer ik de relatie tussen vermogensongelijkheid en vermogensmobiliteit,
en het onderscheid tussen type dependence en scale dependence. Ten eerste ontwikkel ik een
theoretisch denkkader dat beide concepten formeel definieert. Het model bevat de belangrijk-
ste bronnen van vermogensongelijkheid die in de literatuur worden benadrukt: heterogeneit
in arbeidsinkomen, spaarheterogeniteit, kapitaalinkomensrisico en het verband tussen ren-
dement en vermogen. Ten tweede toon ik via vereenvoudigde heterogene agentenmodellen
aan dat het onderscheid tussen type en scale dependence cruciaal is voor het verklaren van
vermogensmobiliteit: bij eenzelfde graad van ongelijkheid genereren modellen met type de-
pendence een hogere vermogensmobiliteit dan modellen met enkel scale dependence. Daar-
naast blijkt dat het verband tussen mobiliteit en deze parameters wordt gekenmerkt door niet-
lineariteiten. Ten derde bouw ik een Aiyagari-Bewley-Huggett economie waarin beide vormen
van dependence zijn geintegreerd. Voor de schattig van het model ontwikkel ik een nieuwe
methode die een theoretische scale-dependent functie koppelt aan een empirisch bepaalde
type-dependent structuur op basis van PSID-paneldata. Het geschatte model weet zowel de
vermogensongelijkheid als de vermogensmobiliteit in de Verenigde Staten in 2021 goed te re-
produceren. Ten vierde voer ik verschillende counterfactual analyses uit. Die tonen aan dat
realistische type dependence in spaargedrag essentieel is om vermogensmobiliteit in het model
in lijn te brengen met de empirische data. Bovendien blijken ongelijkheid in arbeidsinkomen
en spaargedrag de belangrijkste factoren achter persistentie in de vermogensverdeling, zowel
op korte als op lange termijn. Heterogeniteit in rendementen speelt een kleinere rol. In het
algemeen geldt: hoe groter de vermogensongelijkheid, hoe lager de vermogensmobiliteit.
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Summary in English

This PhD dissertation studies wealth inequality and wealth mobility in the United States. It
consists of three chapters.

In the first chapter, I leverage data from the Panel Study of Income Dynamics (PSID) to an-
alyze inter- and intra-generational wealth mobility in the United States. Methodologically, I
compare the wealth dynamics in the PSID to those from the Survey of Consumer Finances
(SCF). The PSID underestimates top wealth inequality compared to the SCEF, but this does not
compromise an analysis of wealth mobility across the entire wealth distribution. I then use
the validated dataset to investigate four research questions. First, what is the level of rela-
tive inter-generational wealth mobility in the United States? Second, what is the degree of
intra-generational wealth mobility? Third, does there exist within-family wealth rank interde-
pendence, i.e. do the changes in individuals” within-cohort wealth ranks relate to the within-
cohort wealth rank changes of their parents over the same historical time period? Fourth, what
are the sources of intra-generational wealth mobility in the United States? These four analyses
provide an extensive set of empirical wealth mobility moments that are useful to the heteroge-
neous agent literature. Furthermore, they generate several novel findings and contributions.
First, from an inter-generational (family-level) perspective, I develop a gradient boosting ma-
chine learning model to approximate household wealth ranks back to 1969. This proxy sig-
nificantly outperforms housing-based proxies commonly used in the literature. Moreover, I
find that wealth rank resemblance between (grand)parents and their (grand)children increases
with age, that inter-generational wealth mobility has declined over time, and that the United
States exhibits lower mobility compared to most other countries with available data. Second,
intra-generational (individual-level) wealth mobility is concentrated between ages 30 and 39,
has declined at the top of the distribution, and is substantially lower than in the Nordic coun-
tries. Diverging wealth rank trajectories are associated with variation in inter-generational
transfer receipts, business ownership, labor income, health, and non-mortgage indebtedness.
Third, bridging the inter- and intra-generational perspectives, I find positive interdependence
between the wealth rank trajectories of individuals and those of their parents over the same
historical time period.

In the second chapter, I use household-level data from the Panel Study of Income Dynamics
(PSID) to provide evidence on saving behavior across the wealth (rank) distribution in the
United States. I estimate saving rates across wealth deciles using two complementary ap-
proaches: the cross-sectional method and the aggregate method. I obtain four collections of
stylized empirical facts. First, I find that total saving rates out of labor income and new re-
sources rise with wealth ranks (flow-based saving rates). In contrast, total saving rates out
of wealth and composite resources are roughly stable and only moderately increasing with
wealth ranks (stock-based saving rates). Second, wealth (rank) mobility has a substantial im-
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pact on total saving rate patterns across the wealth distribution. However, while the contribu-
tion of wealth mobility is strictly positive for the cross-sectional method, it is negative across
most of the wealth distribution for the aggregate method. I show that this discrepancy re-
lates to these methods’” distinct treatment of wealth (rank) mobility: while the cross-sectional
method attaches equal weight to all households in a wealth decile, the aggregate method over-
weighs households that display downward wealth mobility. Third, I find that the synthetic
method (which is commonly used in the absence of panel data) overestimates saving rates up
to the 80th percentile, while it underestimates the saving rates of the top 20%. Fourth, I demon-
strate that households’ reliance on capital gains rises across the wealth rank distribution: the
top wealthiest households’ total saving consists predominantly of saving by holding appreci-
ating assets. Passive saving out of inter-generational transfers is more common for wealthier
households, but relatively unimportant in magnitude. Many of the empirical saving behavior
moments across the wealth (rank) distribution reported in Chapter 2 are likely of interest to
the heterogeneous agent literature replicating the U.S. wealth distribution.

In the third chapter, I focus on the interplay between the inequality of the wealth distribution
and its turnover (i.e. wealth mobility), and on the distinction between type dependence and
scale dependence. First, I develop a generalized theoretical framework that provides a formal
definition of type dependence and scale dependence. The theoretical framework embeds the
core sources of wealth inequality underscored in the theoretical literature (labor income risk,
saving rate heterogeneity, capital income risk, link between returns and wealth). Second, us-
ing a set of simplified heterogeneous agent models, I show that the type dependence versus
scale dependence distinction is critical for matching wealth mobility outcomes: for identi-
cal wealth inequality outcomes, type-dependent models generate higher wealth mobility than
scale-dependent ones. In addition, the relationship between wealth mobility and the scale-
and type-dependent parameters is found to be characterized by non-linearities. Third, I con-
struct an Aiyagari-Bewley-Huggett economy with type dependence and scale dependence.
To estimate the type-dependent and scale-dependent parameters, I outline a novel estima-
tion strategy that links a theoretical scale-dependent function to a corresponding, empirically-
determined type-dependent structure using panel data from the PSID. The estimated model
replicates well the wealth inequality and wealth mobility observed in the United States in 2021.
Fourth, I conduct a series of counterfactual analyses on the estimated baseline model. These
show that allowing for a realistic degree of saving ratio type dependence is critical in match-
ing wealth mobility in the stationary model state to its empirical counterpart. Moreover, labor
income inequality and saving ratio inequality emerge as the key driving forces behind agents’
persistence in the wealth (rank) distribution in both the short-run and the long-run. Return
heterogeneity is found to be less important. Finally, in general, there is an inverse relationship
between wealth inequality and wealth mobility: higher wealth inequality coincides with lower
wealth mobility.
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Introduction

Since the beginning of the 1980s, wealth inequality in the United States has increased signifi-
cantly, especially at the upper tail of the distribution. This evolution has triggered renewed in-
terest in wealth inequality in popular and academic writing. It has also raised concerns about
social mobility and its future trajectory. Low wealth mobility makes high wealth inequality
even more problematic. Some authors have argued that, if left unaddressed, the growing in-
equality might induce a return to the Gilded Age — a period marked by high wealth inequality
and limited wealth mobility. During that era, individuals’ parental wealth positions were crit-
ical in determining their lifetime economic resources. In this context, it is unsurprising that
also debates on wealth and estate taxation have become more prominent in recent academic
and public discourse.

In the academic theoretical literature, a subset of the heterogeneous agent literature has fo-
cused on investigating the U.S. wealth distribution and its properties. This strand of the liter-
ature departs from Aiyagari-Bewley-Huggett economies in which agents make optimal deci-
sions under uninsurable risk. These models have been used to address two types of research
questions related to wealth inequality. On the one hand, what explains the existence of wealth
inequality at a given point in time? What is the contribution of different agent heterogeneities
(labor income risk, capital income risk, saving rate heterogeneity, taxation, etc.) to U.S. wealth
inequality outcomes? On the other hand, what are the driving factors behind the rising U.S.
wealth inequality since the beginning of the 1980s? And have policy changes contributed to
the rise in wealth inequality?

Two shortcomings This theoretical literature has two key shortcomings, however. First,
Aiyagari-Bewley-Huggett models tend to focus exclusively on wealth inequality, which mea-
sures the degree of dispersion in wealth levels across the population (‘shortcoming 1’). Only a
handful of models also include relative wealth mobility — the turnover of individuals across
the wealth rank distribution — as a target variable. Currently, there therefore exists only lim-
ited insight on the interdependence between wealth inequality and wealth mobility. In prin-
ciple, one expects an inverse relationship: higher wealth inequality implies larger absolute
wealth differences between individuals, which renders turnover across the wealth rank dis-
tribution less likely. However, does this inverse relationship between wealth inequality and
wealth mobility hold by definition? Or does the strength of the relationship interact with the
underlying wealth inequality-generating channel? And what do the empirical data tell us?

The absence of wealth mobility in the Aiyagari-Bewley-Huggett models narrows the scope of
their policy and societal implications. More precisely, the degree to which wealth inequality
is seen as detrimental to a society is linked to the amount of wealth mobility: as mentioned,
elevated wealth inequality might be less problematic if it coincides with high wealth mobil-
ity. This is because in a high wealth mobility setting, the negative externalities of high wealth



inequality — e.g. political capture, social fragmentation and unrest, unequal access to health-
care, underinvestment in human capital — are likely more limited. As a result, there are good
reasons to be interested not only in the effects of decision or policy-related variables on wealth
inequality, but also their influence on wealth mobility. Yet, given Aiyagari-Bewley-Huggett
heterogeneous agent models” almost exclusive focus on wealth inequality, they do not account
for wealth mobility.

Second, to explain wealth inequality, Aiyagari-Bewley-Huggett heterogeneous agent models
rely on structural agent heterogeneities in saving behavior, portfolio allocation and expected
asset returns. This structural heterogeneity is introduced through either type dependence or
scale dependence. On the one hand, type dependence implies that agents are ex-ante differ-
ent: for instance, some agents might be more future-oriented or less risk averse than others,
leading to diverging saving rates between these agents even when they have identical wealth
levels. On the other hand, scale dependence means that agents are structurally heterogeneous
due to differences in wealth levels: the difference between the agents arises ex-post. For exam-
ple, when preferences are non-homothetic, wealthier individuals will optimally choose higher
saving rates than poorer ones.

However, there currently does not even exist a formal definition of type dependence and scale
dependence in the literature, and the implications of heterogeneous agent models” reliance
on type dependence versus scale dependence are poorly understood (‘shortcoming 2”). More
precisely, while it has been demonstrated that the degree of type dependence and scale de-
pendence in these models affects optimal wealth taxation, this has not been extended to other
research questions. In addition, relating back to shortcoming 1, the degree of type dependence
versus scale dependence might affect wealth mobility outcomes: insofar as agents can switch
between types, type dependence introduces an additional source of randomness in Aiyagari-
Bewley-Huggett models that is not present in purely scale-dependent models. Is accounting
for a realistic degree of type dependence versus scale dependence then critical in producing
realistic wealth mobility? And how do type and scale dependence parameters influence model
outcomes for wealth inequality and wealth mobility?

Addressing these two shortcomings of Aiyagari-Bewley-Huggett models is not straightfor-
ward: there are four main challenges. First, no extensive empirical data on wealth mobility is
available for the United States. As a result, the few theoretical studies for the U.S. that have in-
tegrated wealth mobility into their models have resorted to matching Nordic countries” wealth
mobility outcomes, broader social mobility metrics or wealth mobility among a very small
subset of the U.S. population — the Forbes 400 families. Second, for their calibration, Aiyagari-
Bewley-Huggett models are highly reliant on cross-sectional moments computed across the
wealth (rank) distribution using micro datasets. For the United States, it is primarily the Sur-
vey of Consumer Finances (SCF) that is being used. However, this survey does not contain a
panel dimension. This makes it impossible to conduct an unbiased estimation of saving be-



havior at the household level, as such unbiased estimation requires as input the first difference
of wealth. This is especially unfortunate as saving rate heterogeneity is found to be a critical
driver of wealth inequality. Third, the absence of a formalized definition of type dependence
and scale dependence in the context of Aiyagari-Bewley-Huggett models makes it challenging
to investigate the impact of the type- and scale-dependent assumptions on model outcomes.
Fourth, there currently exists no model-based estimation strategy for the degree of type de-
pendence versus scale dependence.

Overview PhD The present PhD project aims to address these four challenges and hence take
important steps forward in resolving the two shortcomings of Aiyagari-Bewley-Huggett het-
erogeneous agent models. It also contributes to answering six broader research questions that
have occupied researchers in recent years. First, do wealth inequality and wealth mobility dis-
play an inverse relationship, both empirically and theoretically? Second, what are the sources
of wealth inequality and wealth mobility in general, and in the U.S. in particular? Third, how
high is wealth mobility in the U.S., also compared to other countries, and how did it evolve
during the last decades? Fourth, how do type dependence and scale dependence parameters
affect wealth inequality and wealth mobility outcomes, and how important is this distinction
for matching U.S. wealth mobility outcomes? Fifth, what is the importance of type depen-
dence and scale dependence in households’ saving and portfolio allocation behavior? Sixth,
does there exist a positive relationship between saving behavior and a household’s position in
the wealth distribution? I provide an answer to these six research questions across the three
chapters of this PhD dissertation.

In a first chapter, I leverage data from the Panel Study of Income Dynamics (PSID) to analyze
inter- and intra-generational wealth mobility in the United States. From a methodological per-
spective, I compare the wealth dynamics in the PSID to those from the Survey of Consumer
Finances (SCF). The PSID underestimates top wealth inequality compared to the SCFE, but this
does not compromise an analysis of wealth mobility across the entire wealth distribution. I
then use the validated dataset to investigate four research questions. First, what is the level
of relative inter- and intra-generational wealth mobility in the United States? Second, how
have both types of wealth mobility indicators evolved over time, and how do they compare to
other countries with available data? Third, does there exist within-family wealth rank interde-
pendence, i.e. do the changes in individuals” wealth ranks relate to the wealth rank changes
of their parents over the same historical time period? Fourth, what are the sources of intra-
generational wealth mobility in the United States? These analyses provide an extensive set
of empirical wealth mobility moments that are useful to the heterogeneous agent literature
on the U.S. wealth distribution. Furthermore, they generate several novel findings and con-
tributions. First, from an inter-generational (family-level) perspective, I develop a gradient
boosting machine learning model to approximate household wealth ranks back to 1969. This
proxy significantly outperforms housing-based proxies commonly used in the literature. I



find that wealth rank resemblance between (grand)parents and their (grand)children increases
with age, that inter-generational wealth mobility has declined over time, and that the United
States exhibits lower mobility compared to most other countries with available data. Second,
intra-generational (individual-level) wealth mobility is concentrated between ages 30 and 39,
has declined at the top of the distribution, and is substantially lower than in the Nordic coun-
tries. Diverging wealth rank trajectories are associated with variation in inter-generational
transfer receipts, business ownership, labor income, health, and non-mortgage indebtedness.
Third, bridging the inter- and intra-generational perspectives, I find positive interdependence
between the wealth rank trajectories of individuals and those of their parents over the same
historical time period.

In a second chapter, I use household-level data from the Panel Study of Income Dynamics
(PSID) to provide evidence on saving behavior across the wealth (rank) distribution in the
United States. I estimate saving rates across wealth deciles using two complementary ap-
proaches: the cross-sectional method and the aggregate method. I obtain four collections of
stylized empirical facts. First, I find that total saving rates out of labor income and new re-
sources rise with wealth ranks (flow-based saving rates). In contrast, total saving rates out
of wealth and composite resources are roughly stable or moderately increasing with wealth
ranks (stock-based saving rates). Second, wealth (rank) mobility has a substantial impact on
total saving rate patterns across the wealth distribution. However, while the contribution of
wealth mobility is strictly positive for the cross-sectional method, it is negative across most
of the wealth distribution for the aggregate method. I show that this discrepancy relates to
these methods’ distinct treatment of wealth (rank) mobility: while the cross-sectional method
attaches equal weight to all households in a wealth decile, the aggregate method overweighs
households that display downward wealth mobility. Third, I find that the synthetic method
(which is commonly used in the absence of panel data) overestimates saving rates up to the
80th percentile, while it underestimates the saving rates of the top 20%. Fourth, I demonstrate
that households’ reliance on capital gains rises across the wealth rank distribution: the top
wealthiest households’ total saving consists predominantly of saving by holding appreciat-
ing assets. Passive saving out of inter-generational transfers is more common for wealthier
households, but relatively unimportant in magnitude. Many of the empirical saving behavior
moments across the wealth (rank) distribution reported in Chapter 2 are likely of interest to
the heterogeneous agent literature replicating the U.S. wealth distribution.

In a third chapter, I use heterogeneous agent models incorporating both type dependence and
scale dependence to jointly study wealth inequality and wealth mobility in the United States.
The chapter makes four core contributions to the literature. First, I outline a generalized theo-
retical framework that provides a formal definition of type dependence and scale dependence.
The framework embeds the core sources of wealth inequality underscored in the theoretical
literature (labor income risk, saving rate heterogeneity, capital income risk, link between re-



turns and wealth). Second, using a set of simplified heterogeneous agent models, I demon-
strate that the type dependence versus scale dependence distinction is critical for matching
wealth mobility outcomes: for identical wealth inequality outcomes, type-dependent models
generate higher wealth mobility than scale-dependent ones. Third, I construct an Aiyagari-
Bewley-Huggett economy populated by households and entrepreneurs, and with both type
dependence and scale dependence in parameters and decision variables. To estimate the
type-dependent and scale-dependent parameters, I outline a novel estimation strategy that
links a theoretical scale-dependent function to a corresponding, empirically-determined type-
dependent structure using panel data from the PSID. The estimated model replicates well the
wealth inequality and wealth mobility observed in the United States in 2021. Fourth, I conduct
a series of counterfactual analyses on the estimated baseline model. These show that allowing
for a realistic degree of saving ratio type dependence is critical in matching wealth mobility
in the stationary model state to its empirical counterpart. Moreover, labor income inequal-
ity and saving ratio inequality emerge as the key driving forces behind agents’ persistence in
the wealth (rank) distribution in both the short-run and the long-run. Return heterogeneity is
found to be less important, although this may relate to specific model assumptions. Finally, in
general, there exists an inverse relationship between wealth inequality and wealth mobility:
higher wealth inequality coincides with lower wealth mobility.

Data and model limitations/choices This dissertation makes various data and modeling
choices that warrant some reflection. First, throughout the dissertation, I define wealth mobil-
ity as relative wealth mobility, i.e. changes in families” or individuals” positions in the wealth
distribution. In line with this choice, I compute outcome metrics such as rank-rank coefficients
and transition probabilities. An alternative would be to investigate absolute wealth mobility,
i.e. whether families or individuals accumulate higher or lower real wealth over time. How-
ever, Chapters 1 and 2 primarily aim to provide calibration inputs to the heterogeneous agent
literature. Models in this literature usually derive a stationary state where aggregate wealth
growth is zero or constant. In such a setting, it makes more sense to consider relative as op-
posed to absolute wealth mobility.

Second, each of the three chapters of this PhD dissertation are highly reliant on the Panel Study
of Income Dynamics (PSID). The main motivation for using the PSID is that it represents the
only panel dataset of U.S. households over a time-span of multiple decades and covering three
family generations. Unfortunately, as I outline in Chapter 1, the PSID does not capture the tail
of the U.S. wealth distribution well. This means that for instance the top 10% wealth share
in the PSID is lower than in the Survey of Consumer Finances (SCF) or Distributional Na-
tional Accounts (DINA). For the study of relative wealth mobility — which uses the number of
individuals in various wealth brackets as input — this is unproblematic. However, the under-
representation of the tail does imply that one can only investigate relatively broad top wealth
categories — e.g. the top 10% wealthiest. Making claims about or deriving policy implica-



tions on a finer group of top wealthiest (such as the top 1% and beyond) is impossible as these
households are underrepresented or not represented in the PSID.

Third, Chapters 1 and 2 use micro data to compute empirical moments that are of interest to
the Aiyagari-Bewley-Huggett heterogeneous agent literature. Furthermore, the second part of
Chapter 3 constructs a heterogeneous agent model that jointly matches U.S. wealth inequal-
ity and wealth mobility moments. However, in principle, one could also use other modeling
strategies to investigate the properties of the U.S. wealth distribution. A paramount alterna-
tive are agent-based (stock-flow consistent) models. Unlike heterogeneous agent models, such
agent-based models depart from behavioral heuristics as opposed to intertemporal optimiza-
tion processes. However, the gap between the present dissertation and the agent-based models
is relatively small. That is, the empirical moments generated in Chapters 1 and 2 are also useful
for agent-based models of the U.S. wealth distribution: they are definitely not exclusive to the
Aiyagari-Bewley-Huggett literature. Moreover, the first part of Chapter 3 provides a general-
ized type versus scale dependence framework that is also relevant to agent-based models: the
generalized framework does not impose any optimization procedure on the scale-dependent
functions and can therefore be readily extended to an agent-based modeling context.



Chapter 1

Wealth Mobility in the United States: Empirical Evidence from the
PSID !

This paper leverages data from the Panel Study of Income Dynamics (PSID) to analyze inter-
and intra-generational wealth mobility in the United States. It provides a rich set of empirical
moments that are likely to be of interest to the heterogeneous agent literature on the U.S. wealth
distribution. The analysis yields several novel contributions and findings. First, from an inter-
generational (family-level) perspective, I develop a gradient boosting machine learning model
to approximate household wealth ranks back to 1969. This proxy significantly outperforms the
housing-based proxies commonly used in the literature. I find that wealth rank resemblance
between (grand)parents and their (grand)children increases with age, that inter-generational
wealth mobility has declined over time, and that the United States exhibits lower mobility
compared to most other countries with available data. Second, intra-generational (individual-
level) wealth mobility is concentrated between ages 30 and 39, has declined at the top of the
distribution, and is substantially lower than in the Nordic countries. Diverging wealth rank
trajectories are associated with variation in inter-generational transfer receipts, business own-
ership, labor income, health, and non-mortgage indebtedness. Third, bridging the inter- and
intra-generational perspectives, I find positive interdependence between the wealth rank tra-
jectories of individuals and those of their parents over the same historical time period. Fourth,
I find that the PSID underestimates top wealth inequality compared to other cross-sectional
datasets. However, I demonstrate that this does not compromise an analysis of wealth mobil-
ity across the entire wealth distribution.
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Ravn, Alberto Russo and Dirk Van de gaer for their valuable comments on this working paper. I would also like to
thank the participants at the internal seminar of the Department of Economics (UGent), the ESPANet Early Career
Researchers Day (ESPANet/KULeuven), the 20th PSE Doctorissimes Conference (Paris School of Economics), the
Inequalities & Opportunities Conference (University of Bari) and the 11th ECINEQ Conference (ECINEQ/World
Bank) for their discussion and feedback.



1 Introduction

Over the past decade, empirical research on wealth inequality has expanded considerably, both
for the United States and at an international level (e.g. Saez & Zucman, 2016; Smith et al., 2023;
Zucman, 2019). In contrast, studies investigating relative inter- or intra-generational wealth
mobility — changes in families” or individuals” wealth ranks across and within generations —
remain hard to come by. This is unfortunate for two main reasons.

First, insights into inter- and intra-generational wealth mobility may inform academic and
popular debates on estate taxation, wealth taxation and the economics of opportunity. For
example, high wealth inequality may be viewed as less detrimental to society if it coincides
with high turnover at the top of the wealth distribution (and vice versa). This is because in
such a high wealth mobility setting, the negative externalities of high wealth inequality —
e.g. political capture and weakening of political institutions, social fragmentation and unrest,
unequal access to healthcare, underinvestment in human capital — are likely more limited. In
a similar spirit, wealth mobility outcomes may serve as a key input in shaping and challenging
cultural narratives on the American dream and the United States as land of opportunity.

Second, a theoretical literature on heterogeneous agent macro models uses wealth inequality
as key outcome variable, while disregarding wealth mobility (e.g. De Nardi & Fella, 2017;
Hubmer et al., 2021; Xavier, 2021). Such setting does not allow to take an explicit stance on
the importance of type versus scale dependence: an unequal stationary wealth distribution
could be generated by ex-ante differences in discount factors or risk aversion across agents
(type dependence), or by ex-post heterogeneity in response to different wealth levels (scale
dependence). Calibrating these models jointly to inequality and mobility moments could be
a starting point in solving this type versus scale dependence puzzle (e.g. Van Langenhove,
2025). While there exists some theoretical work that incorporates wealth mobility outcomes
(Atkeson & Irie, 2022; Benhabib et al., 2019; Fernholz, 2016; Gomez, 2023), this literature is
constrained by the unavailability of wealth mobility data for the United States.

Research questions To address the scarcity of wealth mobility data over recent decades, this
paper leverages the Panel Study of Income Dynamics (PSID) to provide evidence on inter-
and intra-generational wealth mobility outcomes in the United States. Many of the generated
empirical moments are likely of interest to the heterogeneous agent macro literature on the
U.S. wealth distribution. Three research questions are addressed.

First, from an inter-generational (family-level) perspective, I investigate how the within-cohort
wealth ranks of individuals compare to the within-cohort wealth ranks of their parents (at
identical points in their lifecycles) and grandparents (at different points in their lifecycles, due
to data limitations). Such static comparison of wealth ranks across generations is the approach
commonly taken in the literature (e.g. Adermon et al., 2018; Boserup et al., 2017; Pfeffer &
Killewald, 2018; Siminsky & Yu, 2022).



Second, from an intra-generational (individual-level) perspective, the paper analyzes the within-
cohort wealth rank changes of individuals over their lifecycle. For example, given one’s within-
cohort wealth rank at the age of 30 or 55, what is the probability of this individual moving
upward or downward the wealth rank distribution as it progresses through working life or
older age? And how do the observed wealth rank trajectories relate to individuals” inter-
generational transfer receipts and socio-economic characteristics? I investigate these questions
for both working life (ages 30-54) and older age (ages 55-74).

Third, bridging the inter-generational (family-level) and intra-generational (individual-level)
perspectives, this paper is the first to investigate the inter-dependence between individuals’
wealth rank trajectories and those of family members (i.e. within-family inter-dependence in
intra-generational wealth mobility). That is, does there exist covariance between the changes
in individuals” wealth ranks and those of their parents over the same historical time period? I
find that there does exist covariance. This suggests the presence of altruism across generations
and the exposure to identical sources of idiosyncratic risk across family members.

Related literature & contributions This paper contributes to four strands of the literature. I
discuss each of these strands in what follows.

Inter-generational (family-level) wealth mobility Iadd to the literature studying inter-generational
wealth mobility in the United States (Charles & Hurst, 2003; Conley & Glauber, 2008; Menchik,
1979; Pfeffer & Killewald, 2018; Siminsky & Yu, 2022). Among these, only Pfeffer & Killewald
(2018) extend their analysis to mobility across three generations (grandparents-grandchildren).
For the Nordic countries, Adermon et al. (2018), Black et al. (2020), Boserup et al. (2017) and
Fagereng et al. (2021) investigate inter-generational wealth mobility for Norway, Denmark and
Sweden respectively. Finally, Gregg & Kanabar (2023) and Levell & Sturrock (2023) produce
evidence on inter-generational wealth mobility for the United Kingdom, while Siminsky & Yu
(2022) do so for Australia. I make three contributions to this inter-generational wealth mobility
literature.

First, from a methodological perspective, I develop a novel method to approximate wealth
ranks whenever direct wealth data is unavailable. While targeted at the PSID, this method is
likely generalizable to other datasets. In the PSID, questions on asset holdings and debt lev-
els date back only to 1984. However, data on main housing values and rental payments are
available as early as 1969. A common strategy is then to assume that renters have zero wealth
and to approximate total household wealth by main housing values (Pfeffer & Killewald, 2018,
but also e.g. Chetty et al., 2020). Instead, I develop a gradient-boosting (GB) machine learning
model trained on post-1984 data. This ML-model incorporates additional socio-economic vari-
ables from the PSID as input variables, and significantly outperforms the housing proxies in
predicting household wealth levels out-of-sample. However, these proxies underestimate the
actual degree of intra-generational wealth mobility during working life, as well as the actual
degree of inter-generational wealth mobility.



Second, existing studies generally include an age control in the standard rank-rank regressions,
hence imposing a functional form on the relationship between age and wealth persistence. On
the contrary, I investigate the impact of lifecycle bias on estimated wealth mobility outcomes
without imposing a functional form by computing wealth mobility moments across distinct
lifecycle stages. I find that age matters for inter-generational (family-level) wealth mobility
outcomes: wealth rank resemblance between parents and their children rises significantly with
parents” and children’s age (parent-child lifecycle bias). In addition, wealth rank resemblance
between grandparents and their grandchildren is higher when grandchildren are older than 35
years (grandchild lifecycle bias). Finally, I show that grandparent-grandchild mobility (three
generations) exceeds parent-child mobility (two generations). The effect is non-linear over the
wealth distribution, however: while mobility at the top is significantly higher across three
versus two generations, the difference in mobility at the bottom is comparatively weaker.

Third, this paper is the first to investigate the time trend and cross-country differences in inter-
generational wealth mobility in the United States across the entire wealth distribution. That is,
has the increase over time in overall wealth inequality (e.g. Saez & Zucman, 2016; Smith et al.,
2023; Zucman, 2019) coincided with changes in inter-generational wealth mobility? And how
does wealth mobility in the United States compare to other developed countries for which data
is available? On the one hand, I find that inter-generational wealth mobility has declined over
the past decades. This complements evidence on the decline in wealth mobility among the
top 400 wealthiest families in the United States (Fernholz & Hagler, 2023). It also aligns with
the decline in inter-generational wealth mobility established for Sweden (Adermon et al., 2018)
and the United Kingdom (Gregg & Kanabar, 2023; Levell & Sturrock, 2023). On the other hand,
I find that wealth mobility in the United States is lower compared to most other countries with
available data.

Intra-generational (individual-level) wealth mobility This paper also contributes to the literature
on intra-generational wealth mobility. For the United States, this intra-generational literature
is currently limited to Conley & Glauber (2008), Klevmarken et al. (2003) and Shiro et al.
(2022)?. For the Nordic countries, Audoly et al. (2024) and Hubmer et al. (2024) analyze
intra-generational mobility for Norway. I contribute to the intra-generational wealth mobility
literature along three lines.

First, in line with the inter-generational mobility analysis, I explicitly investigate the relation-
ship between age and intra-generational wealth mobility outcomes. More precisely, I am the
first to investigate intra-generational mobility over roughly the entire lifecycle, from ages 30-34
to ages 70-74. I find that wealth mobility during working life (ages 30-54) exceeds the mobility
observed during older age (ages 55-74). Moreover, timing effects indicate that the majority

%In addition, Kuhn et al. (2020) and Kalsi & Ward (2025) conduct limited intra-generational wealth mobility
analyses using the PSID. These analyses serve as a robustness to their baseline results.
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of intra-generational (individual-level) wealth mobility occurs early in working life, between
ages 30 and 39.

Second, similar to the inter-generational analysis, I investigate the time trend in intra-generational
wealth mobility and compare the wealth mobility outcomes to other countries with available
data. On the one hand, this paper is the first to show that the increase in within-cohort life-
cycle wealth inequality over the past decades has coincided with a decline in overall intra-
generational wealth mobility. This decline in wealth mobility masks opposing effects at the
bottom and at the top of the wealth distribution, however: while intra-generational wealth
mobility at the top has declined strongly, mobility at the bottom has in fact risen slightly. On
the other hand, intra-generational wealth mobility in the United States is substantially lower
compared to Norway.

Third, this paper explores the sources of intra-generational wealth mobility in the United
States. The analysis indicates that consolidation at the top (bottom) of the wealth distribu-
tion is associated with the most substantial (an absence of) inter-vivos transfer and inheritance
receipts. However, even for the wealthiest, these receipts make up only a limited fraction
of their lifetime resources. Furthermore, business ownership is linked with consolidation at
the top and downward wealth mobility, while its association with upward wealth mobility
is inconclusive. Last, consolidation at the bottom and downward mobility to the bottom are
associated with low labor income, poor and deteriorating health, elevated non-mortgage in-
debtedness and modest asset ownership. Instead, at the top, labor income and asset ownership
are relatively high.

Within-family wealth rank inter-dependence This paper additionally opens a novel literature by
bridging the inter- and intra-generational wealth mobility perspectives: I investigate the inter-
dependence between individuals” wealth rank trajectories and those of their parents over the
same historical time period. I find that individuals who experience upward or downward
mobility within their cohort tend to have parents who followed similar wealth rank trajectories
within their own cohort. At the same time, individuals that consolidate their position at the
top are the most common to have wealthy parents. Such wealth rank inter-dependence within
families could reflect two channels. On the one hand, it suggests the presence of altruism across
generations. On the other hand, it may be that parents and their children face exposure to
identical sources of idiosyncratic risk (e.g. business risk, occupational specializations, housing
areas).

PSID-validation Lastbut not least, this paper adds to a literature spanning Cooper et al. (2019),
Insolera et al. (2021) and Pfeffer et al. (2016) by investigating the appropriateness of the Panel
Study of Income Dynamics (PSID) for studying U.S. wealth inequality and wealth mobility.
More precisely, I harmonize the PSID-data and validate the data by contrasting aggregate
wealth and wealth inequality outcomes in the PSID to the outcomes in the top-wealth-adjusted
Survey of Consumer Finances (SCF). Compared to existing studies, I validate these outcomes
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over time rather than for a specific year. Two key findings persist. On the one hand, the PSID
underestimates most aggregate wealth components relative to the SCF, but accurately cap-
tures their time trends. On the other hand, wealth share trajectories in the PSID closely align
with those from the SCF, notwithstanding an underestimation of the top 10% wealth share by
moderately over 10%-points in the PSID. Regardless of this top-wealth bias, I argue that the
PSID can be effectively used to study wealth-related questions. This is particularly true for the
study of wealth mobility (compared to wealth inequality) given that wealth mobility metrics
employ the number of households across the wealth distribution as calculation inputs (rather
than their wealth levels).

Roadmap Section 2 introduces a theoretical framework to understand the driving forces be-
hind inter- and intra-generational wealth mobility. Section 3 summarizes the data and empiri-
cal methods used, building on the detailed exposition provided in Appendices A to F. Section
4 compares the wealth rank outcomes of individuals to those of their parents at the same lifecy-
cle stage and to those of their grandparents at different lifecycle stages. Section 5 presents the
results of the intra-generational wealth mobility analyses during working life and older age.
Section 6 investigates the inter-dependence between the within-cohort wealth rank trajectories
of individuals and those of their parents. Section 7 reports composition statistics for groups
and clusters of individuals with distinct wealth rank trajectories, shedding exploratory light
on potential channels of wealth mobility. Section 8 concludes.

2 Wealth inequality & mobility: framework & channels

2.1 Framework

To define wealth mobility outcomes and their sources, let us consider the following simplified
budget constraint for an individual j:

wi(t+1) = [1—6;(t)] [wj(t)(l +af (1) (t) + zx;i(t)r;i(t)) +y(t) +m;(t) + yj(t)} (1)

where w; denotes the individual’s wealth level, 6; its consumption rate out of total resources
available, «f and r* the allocation to and return on aggregate investment risk, a; and r; the
allocation to and return on idiosyncratic investment risk, y; labor income, m; net receipts of
inter-vivos transfers and inheritances, and y; a residual variable that captures household for-
mation effects. I assume that the return on the riskless asset equals zero. In addition, I abstract
from taxation for simplicity. Furthermore, an individual j is assumed to belong to a family,
which consists of individuals across multiple generations. In this paper, an individual’s fam-
ily is equaled to its parents and grandparents (so that siblings and great-grandparents are
excluded).
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0;, (x? and zx;. constitute the behavioral (or policy) variables of the individual. The level of any
zj € {6}, &g, tx;} is assumed to be determined by an interplay of type- and scale-dependence.
Formally:

zj(t) =z [Kkj(t)] +€(t) (2)

where z [«j] denotes the level of parameter z specific to wealth rank «, and ¢; the individual-
specific variation around z. ¢; is defined as type dependence, whereas z [«;] represents scale
dependence®. Specifically:

¢ Type dependence captures structural parameter heterogeneity across individuals, or —
equivalently — ex-ante heterogeneity. For example, despite having near-identical wealth
ranks, individual a may display higher saving rates or higher aggregate or idiosyncratic
investment risk allocations compared to individual b. This could follow from structural
heterogeneity in preferences, cultural attitudes or social norms. If long-lasting, these
favorable characteristics of individual a are expected to generate higher wealth accumu-
lation over time for individual a relative to individual b.

¢ Scale dependence captures the change in parameter z in response to variation in an in-
dividual’s wealth rank x; — or ex-post heterogeneity. Suppose individuals ¢ and d are
initially identical in terms of wealth levels, labor income and type-dependent parameter
levels. However, individual ¢ experiences a positive idiosyncratic shock, e.g. an increase
in its labor income or the receipt of an inter-vivos transfer. As the wealth level of in-
dividual c rises, its aggregate risk allocation or saving rate may increase as a result of
behavioral (non-homothetic preferences) or institutional determinants (higher expected
returns thanks to superior investment fund access).

2.2 Wealth mobility channels

The budget constraint in Equation 1 allows to differentiate between five channels of inter-
generational wealth transmission, as well as four channels of intra-generational wealth mobil-
ity. While this paper does not quantify the importance of these channels, they aid the interpre-
tation of the reported wealth mobility outcomes later in the paper.

Inter-generational channels There are five channels of inter-generational (family-level) wealth
transmission. First, an individual may receive inter-vivos transfers or inheritances from its par-
ents or grandparents. This introduces a positive association between an individual’s wealth
rank posterior to the transfer receipt and the wealth ranks of the parents or grandparents prior
to their transfer or death. Moreover, wealthy parents may be more likely to finance consump-
tion expenditures of their children (inter-vivos transfers in kind). Second, there exists strong

3There may also be a lifecycle bias underlying the parameter zj. In this paper, I abstract from this bias for
simplicity.
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evidence that parental wealth positively affects labor market outcomes as a result of genetic,
social, education and network effects (e.g. Holmberg et al., 2024; Karagiannaki, 2017; Pfef-
fer, 2018; Staiger, 2023). As high labor income is associated with higher wealth accumulation
over the lifecycle, this creates a positive association between wealth ranks across generations.
Third, investment in high-return assets (such as housing or business) may require substan-
tial upfront expenditures, meaning that individuals might experience borrowing constraints
(e.g. Lee et al., 2020). Access to parental or grandparental wealth could provide the required
collateral to circumvent these constraints and allow for higher wealth accumulation over the
lifecycle. Fourth, the type-dependent level of an individual’s parameters may be influenced by
the type-dependent levels of its parents or grandparents. For example, children could inherit
saving and risk-taking behavior from their parents with a non-random probability as a result
of genetic or social effects (e.g. Black et al., 2020; Fagereng et al., 2021; Lindquist et al., 2015).
Fifth, wealth levels may play a critical role in social network formation. If children have access
to the social networks of their parents or grandparents, individuals from high-wealth families
might be more likely to create a household with individuals from similar-wealth families (e.g.
Charles et al., 2013; Wagner et al., 2020; Fagereng et al., 2022).

Intra-generational channels In addition to the sources of inter-generational wealth trans-
mission, I distinguish between four channels of intra-generational (individual-level) wealth
mobility. First, diverging idiosyncratic risk realizations may generate individual-level wealth
mobility over time. In the framework of Section 2.1, there exist two sources of idiosyncratic
risk: labor income and investment idiosyncratic risk (which may include the business-specific
risk in a non-Markovian portfolio or the idiosyncratic risk to housing). Second, individuals are
type-dependent in behavioral parameters. Insofar as an individual’s wealth-rank neighbors
have dissimilar type-dependent levels, the individual is expected to experience downward or
upward mobility over time even when facing identical aggregate and idiosyncratic risk real-
izations to its wealth rank neighbors. Third, an individual may experience wealth mobility as
a result of inter-generational transfer receipts that diverge from those received by its wealth
rank neighbors. Fourth, an individual can move up or down the wealth distribution through
its own and its wealth rank neighbors’ choices of relationship or marriage partners (household
formation).

Three remarks are in place. First, the presence of scale dependence widens absolute differences
in wealth levels over time and hence generates a more unequal stationary wealth distribution.
However, it does not trigger changes in individuals” wealth ranks, and therefore does not con-
stitute a distinct source of wealth mobility. Second, there may exist type and scale dependence
also in individuals’ non-behavioral variables (such as rates of return). Third, type and scale de-
pendence might be present in individuals” non-financial variables affecting the idiosyncratic
risk realizations and behavioral variables from Equation 1. A prime example of such non-
financial variable is health (e.g. De Nardi et al., 2024; Mahler & Yum, 2024). Specifically, an
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individual’s health may affect its labor income outcomes, as well as its saving rates or risky
asset allocations. At given wealth ranks, some individuals face better health than others due
to genetics or health habits over the lifecycle (a type dependence). At the same time, health
may be directly linked with wealth due to the access to healthcare facilities that wealth buffers
enable (a scale dependence).

3 Data & methods
3.1 Data

This paper uses data from the Panel Study of Income Dynamics (PSID), which was conducted
annually between 1968 and 1997 and bi-annually from 1999 to 2021. All survey waves include
data on family units” gross main housing value, gross main housing mortgage debt and rental
payments. The waves in 1984, 1989, 1994 and 1999-2021 add questions about other assets and
debts, which allows to define wealth as the total of all asset categories minus the total of all
debt categories. In the remainder of this paper, I refer to a full sample () (spanning years
1969 to 2021) and a reduced sample ¥ (which contains only the years where wealth-related
questions were inquired, from 1984 onwards). A detailed description of the dataset is provided
in Appendix A.

3.2 Methodological contributions

The paper has two methodological contributions, which are placed in Appendices. They are
discussed in detail in the Appendices. Here, I highlight the main elements.

First, I harmonize and validate the PSID-dataset for wealth mobility research (Appendices A
and B). Appendix A provides a detailed description and validation of the PSID-data, while
Appendix B harmonizes the wealth variables and reports variable-specific outliers. A key
concern related to the PSID involves its inaccurate representation of the top wealthiest. The
validation exercise in Appendix A underscores this concern: the PSID underestimates the top
10% wealth share by slightly over 10%-points compared to the top-wealth-adjusted Survey
of Consumer Finances (SCF). This relative error becomes larger the smaller the group of top
wealthiest households under consideration. However, there are two reasons why the PSID
can effectively be used to study wealth-related topics, and wealth mobility in particular. On
the one hand, wealth mobility metrics use the number of households across the wealth dis-
tribution as calculation inputs. If one defines top wealth broadly (e.g. the top 10%), exclud-
ing a small number of high-wealth households therefore has a much more limited impact on
these wealth mobility measures than for wealth inequality metrics (which instead rely on total
wealth owned by households). On the other hand, despite its underestimation of top wealth,
the PSID does accurately capture the trends in wealth inequality and accumulation, so that the
underestimation bias is time-invariant (see Appendix A).
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Second, data on wealth w is available over the reduced sample ¥, which begins only in 1984.
A common approach in the literature has therefore been to approximate wealth levels prior to
1984 based on main housing values and rental payments ("housing proxies’), which are avail-
able over the full sample () (e.g. Chetty et al., 2020; Pfeffer & Killewald, 2018). In Appendix
C, I instead construct a gradient boosting (GB) ML-model to proxy wealth levels and ranks
prior to 1984. It uses additional household-level socio-economic data (e.g. labor income, cap-
ital income, household size, household status, age, business ownership, health) available in
the PSID. I demonstrate that such an ML-model displays superior performance compared to
the housing proxies in predicting household wealth levels in a testing set from the post-1984
sample. This outperformance is robust to different performance metrics, to varying time peri-
ods and holds both at the bottom and at the top of the wealth distribution. However, despite
the outperformance to housing proxies, the ML-proxy still misallocates a significant fraction
of households: in a given year, approximately 8% of households have their wealth ranks mis-
allocated by over 25 rank units.

3.3 Empirical strategy

The empirical strategy can be described in three steps. A detailed explanation of these steps
is provided in Appendix D. First, I convert household-level to individual-level data based
on the individual’s household status (single, relationship, marriage)4. Second, individuals are
allocated to birth cohorts (defined over ten-year intervals) and observations for all variables
are summarized by taking the median per lifecycle stage (spanning ages 30-34 to ages 75+).
This aggregation over multiple years is a common approach in the mobility literature (e.g.
Boserup et al., 2017; Gregg & Kanabar, 2023). It has several advantages: it smooths out remain-
ing transitory measurement errors and survey non-response, minimizes noise from household
transitions, and circumvents the non-uniform timing of PSID survey waves. Third, I define
individual-level within-cohort wealth ranks (with maximum ranks normalized to 100), which
constitute the principal inputs in the wealth mobility analyses in this paper. The usage of ranks
(as opposed to for instance log wealth) has the advantage of dealing with zero and negative
observations appropriately and being robust to data transformations (e.g. Boserup et al., 2017).

Two within-cohort wealth ranks series are defined. On the one hand, ¥ is computed from
actual wealth data in the reduced sample (¥). On the other hand, £ is based on proxied
wealth data in the full sample ((2). Mobility outcomes based on these two benchmark series are
reported in the main text. As a robustness, I have additionally computed mobility outcomes
using £, which is calculated from proxied wealth in the reduced sample. Across all wealth
mobility analyses in this paper, £ yields mobility outcomes that align very closely with those
based on £‘}. Consequently, differences in outcomes between x* and £ are due to the usage

4Given that individuals may switch households over time, we are ultimately interested in individuals’ wealth
rank trajectories rather than those of households.
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of a different measure (x versus &) rather than differences in underlying samples (¥ versus ().
Throughout this paper, it will become clear that the proxy wealth series £ underestimate the
actual degree of inter- and intra-generational wealth mobility (based on «).

3.4 Outcome metrics

The inter- and intra-generational analyses rely on a comprehensive set of inequality and mobil-
ity metrics, defined in detail in Appendix E. These measures allow to study overall inter- and
intra-generational wealth inequality and mobility, as well as mobility at the bottom and top of
the wealth distribution. In what follows, I provide an overview of the mobility and inequality
metrics.

To study overall wealth mobility (across the entire wealth distribution), I compute rank-rank
coefficients 5. These regress within-cohort wealth ranks at some final lifecycle stage on within-
cohort wealth ranks at some initial lifecycle stage using Ordinary Least Squares (OLS). This
is a common approach in the mobility literature (e.g. Deutscher & Mazumder, 2021; Mogstad
& Torsvik, 2023). As a robustness, I have also computed overall mobility outcomes based
on a squared mobility metric that attaches greater weight to large wealth rank changes (see
Appendix E). It produces the same conclusions as the rank-rank coefficients, so that I do not
report this squared mobility metric in the main text.

To investigate mobility at both the bottom and top of the wealth distribution, I primarily use
transition probabilities. These measure the ex-ante probability of moving to a specific wealth
bin from a given starting point, as well as the ex-post probability of originating from a specific
bin given a final position. In addition, I categorize families or individuals into discretionary
groups and hierarchical clusters. More precisely:

¢ Discretionary groups: families or individuals with distinct wealth rank combinations
or trajectories are allocated to a discretionary group. At the bottom, (i) the steady poor
include the families or individuals that start and end in the bottom 20%, (ii) the past poor
those that display upward wealth mobility to the top 50% originating from the bottom
20%, and (iii) the new poor start off in the top 50% but experience downward mobility to
the bottom 20%. At the top, (iv) the steady wealthy start and end in the top 10%, (v) the
past wealthy begin in the top 10% but display downward mobility to the bottom 70%,
and (vi) the new wealthy experience upward mobility to the top 10% after starting off in
the bottom 70%.

* Hierarchical clusters’: individuals are grouped into clusters based on their wealth rank
trajectories over the lifecycle, in line with Audoly et al. (2024). These provide com-
plementary evidence to the discretionary groups: while the discretionary groups capture

5This hierarchical clustering procedure is applied only in the intra-generational analysis as it requires wealth
rank trajectories (rather than combinations) as input.
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only the subset of individuals with the most extreme wealth rank trajectories, the clusters
group every single individual in the sample into a distinct cluster. The clusters therefore
provide insight into how broad-based the overall wealth mobility is. A mathematical
derivation of the clustering algorithm is provided in the Online Supplement.

In addition, for the intra-generational analysis, I define variables that capture within-cohort
wealth inequality and accumulation. These encompass within-cohort wealth shares, wealth to
average labor income ratios, and the proportion of low- and high wealth individuals across the
lifecycle. The latter are defined as individuals with wealth levels below annual average labor
income (low wealth) and in excess of twenty times annual average labor income (high wealth).

4 Inter-generational family-level mobility

This section investigates wealth mobility within families from a static perspective. Wealth rank
outcomes of individuals are compared to those of their parents at identical lifecycle stages
and to those of their grandparents at different lifecycle stages (since data is unavailable at the
same lifecycle stages). Section 4.1 provides the outcomes across two generations (parent-child),
while Section 4.2 produces the results across three generations (grandparent-grandchild).

I restrict the sample to (grand)children’s birth cohorts that have at a minimum 750 observations
in at least one (grand)parent-(grand)child lifecycle stage combination®. The analyses below re-
port rank-rank coefficients, as well as transition probabilities across two and three generations.
Crucially, the rank-rank regressions do not include age controls. Instead, they are computed
across different (grand)parent-(grand)child lifecycle combinations to more distinctly quantify
the impact of (grand)parent and (grand)child age on rank-rank coefficient estimates.

Previewing the results, parent-children wealth rank resemblance is found to increase with
parent-child age (parent-child lifecycle bias), while wealth rank resemblance between grand-
parents and their grandchildren is higher when grandchildren are older than 35 years (grand-
child lifecycle bias). In addition to these timing effects, two-generational wealth mobility has
declined over time (specifically between ages 35-44), and three-generational wealth mobility
exceeds two-generational wealth mobility. The latter effect is non-linear, however: mobility at
the top is significantly higher across three generations than across two, while the difference in
mobility at the bottom is comparatively weaker.

®Letting PC and GC denote parent-child and grandparental-grandchild linkages, the (grand)children’s birth
cohorts that fulfill the minimum observation criterion include:

YPC = {PPC,1936-45,1946-55, 195665, 1966-75, 1976-85}
YOC = {PYC,1956-65, 1966-75, 1976-85}

Here, PP¢ and PS¢ denote the pooled dataset in the two- and three-generational samples. These contain the
observations across all other selected birth cohorts.
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4.1 Inter-generational mobility across two generations

Section 4.1 evaluates inter-generational parent-child mobility (across two generations). Using
rank-rank coefficient estimates  (Figure 1), I quantify the degree of mobility across the entire
wealth distribution (overall mobility) as well as the impact of the parent-child lifecycle bias on
the estimations. I subsequently investigate the mobility at the bottom and top of the wealth
distribution using ex-ante and ex-post transition matrices Tga (a) and Tgp(a) (Figures 2 and 3).

Overall mobility The analysis of overall mobility across two generations generates three
key findings (Figure 1). First, the estimated parent-child rank-rank coefficients g range from
0.33 to 0.39 (based on actual wealth) and from 0.39 to 0.46 (based on proxy wealth). Second,
the resemblance between parents and their children in terms of within-cohort wealth ranks is
significantly higher at ages 35-39 compared to ages 30-34. At later ages, the two-generational
resemblance increases further, peaking between ages 55 and 59 (with no data available for
later stages). This follows from the upward-sloping profile of the B-values, and indicates the
presence of a parent-child lifecycle bias in two-generational wealth mobility outcomes. Third,
although they accurately capture age dynamics, the proxy wealth ranks underestimate the
degree of two-generational wealth mobility, contrary to the claim in Pfeffer & Killewald (2018).

The increased parent-child resemblance with age (parent-child lifecycle bias) may be attributed
to two mechanisms. First, the fraction of individuals that receives an inter-vivos transfer or in-
heritance increases strongly during working life, from around 10% at ages 30-34 to close to
40% by ages 50-54 (Appendix G). This is likely to generate greater alignment between parent
and child within-cohort wealth ranks as children’s working life progresses (channel 1 in Sec-
tion 2.3). Second, individuals may have inherited labor market outcomes or type-dependent
parameter levels from their parents, or could have married household partners with similar
parental wealth. These channels (channels 2-5 in Section 2.3) increasingly affect individuals’
wealth levels as their lifecycle progresses and are therefore expected to generate greater parent-
child wealth rank resemblance after some time.

Literature comparison How do the B-estimates in Figure 1 compare to those reported in the
literature? In what follows, I compare the findings to existing estimates for the United States,
the Nordic countries, Australia and the United Kingdom.

For the United States, my estimated values for actual wealth (0.33 to 0.39) are slightly below
those of Pfeffer & Killewald (2018): these authors find a two-generational rank-rank coefficient
of 0.39 using PSID-data until 2015. Moreover, based on a PSID-sample until 2017, Siminsky
& Yu (2022) produce a B-estimate of 0.34, which is similar to the estimates produced in this
paper. Both Pfeffer & Killewald (2018) and Siminsky & Yu (2022) use actual wealth series in a
regression where parents” and children’s ages are included as control variables. Finally, using
log-log regressions, Charles & Hurst (2003) and Conley & Glauber (2008) find wealth rank
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Figure 1: Two-generational rank-rank coefficients B for parents and children at identical
lifecycle stages for the pooled dataset.
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Note: this figure reports rank-rank coefficients § computed from parents” and children’s within-cohort wealth ranks.

These are compared at identical lifecycle stages (shown on the x-axis). Coefficients are reported based on actual

wealth if available (from w¥) and proxy wealth (from ©¥). In the rank-rank regressions, children’s wealth ranks are

the dependent variable. The usage of the pooled dataset indicates that individuals across all selected birth cohorts

are included in the sample. The shaded areas display the 95% confidence intervals.

coefficient estimates of 0.37 and 0.28 respectively based on two-generational PSID-samples
that include relatively young children.

Two-generational wealth mobility in the United States is lower than in Norway, Denmark and
Australia, but similar to the United Kingdom and Sweden. Specifically, Boserup et al. (2017)
report a wealth rank coefficient of 0.27 (at age 45) for Denmark, while Fagereng et al. (2021)
and Audoly et al. (2024) respectively find a rank-rank coefficient of 0.17 (regression with age
controls) and a rank-rank coefficient of 0.25 (at parent-child age 55) for Norway. Moreover,
Siminsky & Yu (2022) produce a B-estimate of 0.25 (regression with age controls) for Australia.
These estimates lay significantly below my estimates for the United States (0.33 to 0.39). By
contrast, for the United Kingdom, Gregg & Kanabar (2023) and Levell & Sturrock (2023) pro-
duce rank-rank coefficients of 0.30 and 0.36 respectively (regressions with age controls). In
addition, for Sweden, Adermon et al. (2018) observe pB-estimates between 0.30 and 0.39 (re-
gression with age controls), while Black et al. (2020) produce a coefficient of 0.35 (regression
with age controls). All these studies rely on actual wealth data as opposed to housing or ma-
chine learning wealth proxies.

The parent-child lifecycle bias in two-generational mobility is well established in the literature.
For the United States, Pfeffer & Killewald (2018) find that two-generational wealth rank resem-
blance increases with parent-child age: their estimated two-generational rank-rank coefficient
rises from 0.33 at ages 25-34 to 0.44 at ages 55-64. Moreover, regressing child wealth ranks be-
tween ages 20 and 45 on parent wealth ranks at age 45 for Denmark, Boserup et al. (2017) find
a U-shaped pattern that bottoms at children’s mid-twenties. Likewise, Audoly et al. (2024)
regress child wealth ranks from ages 30 to 55 on parent wealth ranks at age 55 (on average)

20



Table 1: Two-generational rank-rank coefficients 8 across children’s birth cohorts € YFC for
parents and children at identical lifecycle stages.

Variable | Stage | 1946-55 195665 1966-75 1976-85 1986-95 | Pooled

30-34 - - - 0.35 0.32 0.33

Kt (0.02) (0.04) (0.02)
35-39 - - 0.33 0.40 - 0.37

(0.03) (0.03) (0.02)

40-44 - - 0.35 0.46 - 0.39

(0.03) (0.03) (0.02)

30-34 - 0.39 0.39 0.38 0.40 0.39

(0.03) (0.02) (0.02) (0.03) (0.01)

35-39 - 0.38 0.44 0.45 - 0.43

RO (0.03) (0.02) (0.02) (0.01)
40-44 0.43 0.37 0.43 0.51 - 0.43

(0.04) (0.02) (0.02) (0.03) (0.01)

45-49 0.48 0.44 047 - - 0.46

(0.03) (0.02) (0.03) (0.02)

50-54 0.42 0.41 - - - 0.44

(0.03) 0.02) (0.02)

55-59 0.48 0.46 - - - 0.46

(0.03) (0.03) (0.02)

Note: This table reports rank-rank coefficients for parents” and children’s within-cohort wealth ranks across all
children’s birth cohorts. These are compared at identical lifecycle stages (ranging from 30-34 to 55-59) based on
actual wealth ranks x¥ and proxy wealth ranks #*. In the rank-rank regression, children’s wealth ranks are the
dependent variable. The rank-rank coefficients are calculated only when an birth cohort has at the minimum 750
observations for the respective variable (as specified in the introduction to Section 4). Standard errors are shown in
parentheses below the respective rank-rank coefficient estimate.

and report a positive linear relationship between child age and their B-estimates for Norway.
Finally, Adermon et al. (2018) and Siminsky & Yu (2022) find evidence on two-generational
age effects for Sweden and Australia respectively.

Cross-cohort differences Next to cross-country heterogeneity, we are interested in the evo-
lution of two-generational wealth mobility over time. To this end, I compare rank-rank coeffi-
cient estimates across children’s birth cohorts (Table 1).

Inter-generational wealth mobility across two generations in the United States is found to have
declined over time. The declining mobility can be established only between ages 35 and 44,
however: for the 35-39 and 40-44 lifecycle stages, two-generational pB-estimates are signifi-
cantly higher the more recent the child birth cohort. For the other lifecycle stages, no definite
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conclusions can be drawn’. The increase in § is particularly strong for the 40-44 stage, with
rising from 0.37 (1956-65 cohort) to 0.51 (1976-85 cohort) based on proxy wealth. The decline in
wealth mobility across two generations is due to both stronger persistence at the bottom and
at the top, as shown in the Online Supplement.

How does this relate to existing literature? This paper is the first to investigate the time trend
in overall two-generational wealth mobility. As a result, it is also the first to demonstrate the
decline in overall two-generational wealth mobility for the United States. However, comple-
mentary evidence is provided by Fernholz & Hagler (2023), who report a decline in inter-
generational wealth mobility for the top 400 wealthiest American families since 1985 (using
Forbes 400 data). Furthermore, the decline in overall inter-generational wealth mobility aligns
with evidence from Blanden et al. (2023) and Gregg & Kanabar (2023) for the United Kingdom,
as well as with findings from Adermon et al. (2018) for Sweden.

Mobility at the bottom & top The rank-rank coefficients provide insight into wealth mobility
outcomes across the entire wealth distribution. Instead, the ex-ante and ex-post transition
matrices (Tga(a) and Tgp(a), Figures 2 and 3) provide more detail on mobility at the bottom
and top of the wealth distribution. Complementary evidence is provided by the discretionary
groups, which together contain approximately 25% of parent-child pairs (Appendix H). In

Y

what follows, I report the baseline transition probabilities derived from x* as a benchmark,

and provide the results based on ML-proxy & in parentheses.
The pooled Tga and Tgp show that:

¢ At the bottom: of parents in the bottom 50% at some lifecycle stage, 62%-65% (63%-66%)
of their children end up in the bottom 50% at the same stage (Figure 2). Moreover, 5%
(4%-5%) of children from parents in the bottom 50% at some stage ascend to the top 10%
(Figure 2). Vice versa, of children in the bottom 50% at a given lifecycle stage, 3%-5%
(4%-5%) originate from parents in the top 10% at that stage (Figure 3).

¢ At the top: 25%-35% (27%-36%) of the children from parents in the top 10% at some stage
end up in the top 10% at the same stage (Figure 2). Furthermore, 20%-30% (18%-24%) of
the children from parents in the top 10% at some stage drop to bottom 50% (Figure 2).
Last, 23%—-27% (17%—-25%) of children who end up in the top 10% at some stage originate
from parents in the bottom 50% (Figure 3).

These results have three implications. First, overall mobility across two generations is driven
by both mobility at the bottom and at the top. Second, the parent-child lifecycle bias in two-
generational samples is stronger at the top than at the bottom: the probability of families con-

"For the 30-34 stage, the S-estimates are available only for the most recent child birth cohorts and do not display
a clear trend. For the 45-49, 50-54 and 55-59 lifecycle stages, differences between the B-estimates for the 1946-55
and 1956-65 or 1966-75 cohorts are also limited and do not display a clear trend. These stages do not have sufficient
data available for the more recent child birth cohorts.
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Figure 2: Ex-ante transition matrices Tga (2) between parental and children wealth ranks at

identical lifecycle stages for the pooled dataset.
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Note: these transition matrices compare parents’ and children’s within-cohort wealth ranks at identical lifecycle
stages (ranging from stages 30-34 to 55-59). The transition probabilities are reported both for actual wealth w*
(if available) and proxy wealth ©. Given that the matrices are computed ex-ante, the x-axis represents parental
wealth ranks. The y-axis displays children’s wealth ranks given the wealth ranks of their parents at the same
lifecycle stage. The numbers in parentheses display the 95% confidence intervals for the respective transition

probability.



Figure 3: Ex-post transition matrices Tgp(a) between parental and children wealth ranks at
identical lifecycle stages for the pooled dataset.
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Note: these transition matrices compare parents’ and children’s within-cohort wealth ranks at identical lifecycle
stages (ranging from stages 30-34 to 55-59). The transition probabilities are reported both for actual wealth w™ (if
available) and proxy wealth @. Given that the matrices are computed ex-post, the x-axis represents children’s
wealth ranks. The y-axis displays parental wealth rank outcomes given their children’s wealth ranks at the same
lifecycle stage. The numbers in parentheses display the 95% confidence intervals for the respective transition

probability.
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solidating in the top 10% rises strongly with (parent-child) age considered, following the age
pattern for overall mobility reported in Figure 1. By contrast, the link between parent-child age
and persistence at the bottom is comparatively weaker. Third, in line with the overall mobil-
ity analysis, the proxy wealth ranks generally underestimate actual inter-generational wealth
mobility.

4.2 Inter-generational mobility across three generations

Having discussed inter-generational wealth mobility across two generations, I now discuss
wealth mobility for grandparent-grandchild combinations (across three generations) for the
pooled dataset. I report overall wealth mobility and age effects based on rank-rank coefficients
(Figure 4), and provide more detail through the transition probabilities (Figure 5). A cross-
cohort comparison is not feasible as the majority of grandchildren is concentrated in the same
birth cohort (1976-85).

Grandparental wealth ranks are observed from age 40 or 45 onwards, while grandchild wealth
ranks are recorded only between ages 30 and 39. As a result, in contrast to the two-generational
mobility analysis, a comparison of the within-cohort wealth ranks of grandparents and grand-
children at identical lifecycle stages is infeasible. This mismatch is a common issue in the liter-
ature on inter-generational wealth mobility across three generations (Boserup et al., 2014; Pfef-
fer & Killewald, 2018). To allow for a direct comparison with the degree of three-generational
wealth mobility, I consistently report the two-generational outcomes over the same stage com-
binations (as dotted lines).

Overall mobility Grandparent-grandchild inter-generational wealth mobility is higher than
parent-child mobility. This is evidenced by the lower three-generational rank-rank coefficient
estimates (solid lines) compared to the two-generational estimates (dotted lines) in Figure 4.
The three-generational rank-rank coefficient B-estimates vary in function of the grandparent-
grandchild stage combination considered. For grandchildren aged between 30 and 34, rank-
rank coefficients range between 0.22—0.25 based on actual wealth and between 0.26—0.29
based on proxy wealth. For grandchildren aged between 35 and 39, the B-range based on
proxy wealth increases to 0.30—0.34 (with no estimate available for actual wealth).

Wealth rank resemblance between grandparents and grandchildren is stronger for grandchil-
dren aged 35-39 compared to ages 30-34: the rank-rank coefficient estimates based on the proxy
wealth ranks are approximately 4 to 6 points higher for grandchildren in stage 35-39 relative to
grandchildren in stage 30-34 (regardless of grandparents” ages). This follows from the higher
B-levels observed on the right-hand relative to the left-hand side plot in Figure 4, and indicates
the presence of a grandchild lifecycle bias. Although unsurprising in light of the parent-child
lifecycle bias (see Section 4.1.1), this grandchild lifecycle bias in p-estimates constitutes a novel
result in the three-generational wealth mobility literature.
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Figure 4: Rank-rank coefficients § for grandparents and grandchildren (solid lines) and
parents and children (dotted lines) when (grand)children are aged 30-34 and 35-39.
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Note: this figure produces rank-rank coefficients f computed from the within-cohort wealth ranks of grandparents-
grandchildren (solid lines) and parents-children (dotted lines). These are calculated at different lifecycle stage
combinations. Specifically, I compare (grand)child wealth ranks at ages 30-34 (left-hand side) and ages 35-39 (right-
hand side) to (grand)parental wealth ranks across the lifecycle stages reported on the x-axis. The coefficients are
computed based on actual wealth if available (from w¥) and proxy wealth (from @?). In the rank-rank regression,
(grand)child wealth ranks are the dependent variable. The pooled dataset is used. The shaded areas display the
95% confidence intervals.

The grandchild lifecycle bias has two key implications. First, the three-generational S-ranges
for stage 30-34 (0.22—0.25 for actual wealth) likely overestimate the degree of grandparent-
grandchild inter-generational wealth mobility during midlife in the United States: rank-rank
coefficients when grandchildren reach midlife are likely to be significantly higher. Given that
Pfeffer & Killewald (2018) use a PSID-sample with young grandchildren, their rank-rank coeffi-
cient estimates likely suffer from the same downward bias (see below). Second, the grandchild
age effect appears to be unique to the United States: Boserup et al. (2014) do not find a link
between their benchmark rank-rank coefficients and average grandchild age in their Danish
sample. However, more research on international three-generational wealth mobility would
be needed to validate this conclusion.

Literature comparison How do these findings compare to existing literature? For the United
States, Pfeffer & Killewald (2018) report three-generational rank-rank coefficient estimates of
0.23 (using actual wealth) and 0.21 (using proxy wealth). They obtain their rank-rank coeffi-
cients through a regression that includes grandparental and grandchild age controls. More-
over, their proxy wealth series uses main housing values and rental payments and display
inferior performance compared to the ML-proxy used in this paper (see Appendix C). While
my actual wealth rank regressions (0.22—0.25 at grandchild ages 30-34) yield similar rank-rank
coefficients to theirs (0.23), the proxy wealth rank-rank coefficients reported in this paper (0.26
to 0.29 at grandchild ages 30-34) are substantially higher than the one in Pfeffer & Killewald
(2018) (0.21).
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What explains this large discrepancy in proxy wealth rank S-estimates? The three-generational
samples in Pfeffer & Killewald (2018) rely on grandchild observations for 2013 and 2015. As
these observations follow closely after the 2008-2009 real estate bust, a housing proxy using
solely main housing values may not accurately approximate individual wealth. This is shown
in Appendix C: the measurement error of the housing proxy used by Pfeffer & Killewald (2018)
is particularly higher during the post-crisis years. Instead, the extended sample (until 2021)
and superior ML-proxy used in this paper are likely to have generated a more accurate rank-
rank estimate. In line with the two-generational analysis (see Section 4.1.1), these results also
imply that — contrary to the claim in Pfeffer & Killewald (2018) — rank-rank coefficients based
on proxy wealth underestimate actual three-generational wealth mobility.

Three-generational wealth mobility in the United States is lower compared to Denmark (in line
with the two-generational analysis) and lower than in Sweden (contrary to the two-generational
analysis): using actual wealth, Boserup et al. (2014) report a three-generational benchmark -
estimate of 0.16 for Denmark, while Adermon et al. (2018) produce rank-rank coefficients of
0.14 to 0.17 for Sweden. The estimates in both papers are robust to the grandchild lifecycle
bias. They are lower than the 0.22—0.25 values (actual wealth, grandchild ages 30-34) estab-
lished for the United States in this paper. If sufficient actual wealth data were available for
later grandchild stages in the PSID, the grandchild lifecycle bias implies that the gap in three-
generational mobility between the United States and Nordic countries would likely be even
more pronounced.

Mobility at the bottom & top The transition probabilities affirm the conclusion of higher
wealth mobility over three generations (grandparent-grandchild) compared to two genera-
tions (parent-child). This finding holds both at the top and bottom of the wealth distribution.
There exists a non-linearity, however: while mobility at the top is significantly higher over
three relative to two generations, the divergence in wealth mobility at the bottom is more lim-
ited.

In what follows, I quantify this non-linearity based on Figure 5. It compares the transition
probabilities across three generations (solid lines) versus two generations (dotted lines) when
grandchildren are aged between 30-34. Data for this grandchild stage is available for both
actual wealth (reported as benchmark) and proxy wealth (reported in parentheses):

* At the bottom: 22%-23% (31%-34%) of grandchildren with grandparents in the bottom
20% during their lifecycle end up in the bottom 20% during stage 30-34, compared to
31%-33% (37%-41%) of children from bottom 20% parents (steady poor). Moreover, 31%-
37% (33%-37%) of grandchildren with grandparents in the bottom 20% during their life-
cycle end up in the top 50% at ages 30-34, while this number equals 29%-32% (27%-29%)
for children from bottom 20% parents (past poor). Conversely, 39%-40% (29%-32%) of
grandchildren belonging to the bottom 20% at ages 30-34 originate from grandparents
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Figure 5: Transition probabilities for grandparents and grandchildren (solid lines) and par-
ents and children (dotted lines) when (grand)children are aged 30-34.
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Note: these plots produce transition probabilities over specific wealth bin combinations. These are defined in line
with the discretionary groups (see Section 3.4 and Appendix E). In the notation above, x(,), denotes the within-
cohort wealth ranks of (grand)parents and K(g)c the within-cohort wealth ranks of (grand)children. The transition
probabilities are computed at different lifecycle stage combinations: child wealth ranks at ages 30-34 are compared
to (grand)parental wealth ranks at the stages between ag& 40-44 and 70-74 (plotted on the x-axis). As an example,
the values produced for the right-hand plot on the top row indicate the probability of (grand)children belonging to
the top 50% at stage 30-34 given that their (grand)parents belonged to the bottom 20% at any of the x-axis stages.
I report the outcomes for child lifecycle stage 35-39 in Appendix H. The shaded areas display the 95% confidence
intervals, which have been determined through bootstrapping.



belonging to the top 50% over their lifecycle, relative to 40%-43% (29%-31%) of children
from top 50% parents (new poor).

¢ At the top: 12%-20% (23%-27%) of grandchildren with grandparents in the top 10% dur-
ing their lifecycle end up in the top 10% during stage 30-34, compared to 28%-30% (30%-
33%) of children from top 10% parents (steady wealthy). Moreover, 52%-58% (49%-52%)
of grandchildren with grandparents in the top 10% during their lifecycle end up in the
bottom 70% at ages 30-34, while this number equals 38%-39% (40%-42%) for children of
top 10% parents (past wealthy). Finally, 61%-68% (53%-58%) of grandchildren belonging
to the top 10% at ages 30-34 originate from grandparents belonging to the bottom 70%
over their lifecycle, relative to 41%-48% (37%-44%) of children from bottom 70% parents
(new wealthy).

These results show that the relative differences between grandparent-grandchild and parent-
child transition probabilities are significantly higher for wealthy discretionary families (steady
wealthy, past wealthy and new wealthy) compared to the poor discretionary families (steady
poor, past poor and new poor). The same conclusion persists when considering grandchild
lifecycle stage 35-39 (Figure 21, Appendix H). As a result, mobility at the top is significantly
higher over three relative to two generations, while the difference in mobility at the bottom is
comparatively more limited.

What are tentative theoretical mechanisms behind this non-linearity? I focus on channels that
explain the relatively low persistence at the top, versus those that center on the relatively strong
persistence at the bottom. At the top, families pass along significant wealth across generations
through inter-vivos transfers and inheritances. In theory, this should generate strong persis-
tence at the top. However, even for steady wealthy parent-child pairs, the inter-generational
transfers make up only 4% of their lifetime resources on average during working life®. This
suggests that their impact on inter-generational wealth transmission may be limited. In ad-
dition, business ownership is passed along wealthier families (either through type or scale
dependence), as evidenced by high business ownership rates among steady and past wealthy
families at the start of the children’s working life (see Online Supplement). Given the high
idiosyncratic risk involved in business ownership, this is expected to lead to downward mo-
bility for a significant fraction of wealthy families over longer time-frames’. At the bottom, a
non-negligible number of families are stuck in multi-generational spirals of low labor income
and asset ownership, little or no saving, poor health and — as a result of their low wealth levels
— minimal inter-generational transfer receipts (see Online Supplement).

8Towards the end of working life, this fraction is higher for the most wealthy individuals (around 11%-16%).
Nonetheless, in line with evidence from Black et al. (2022) for Norway, inter-vivos transfers and inheritances still
make up a relatively limited fraction of lifetime resources even for individuals from wealthy families.

This coincides with the argument made in Kalsi & Ward (2025), who find that persistence among the elite
wealthiest during the Gilded Age period in the United States was relatively low.
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5 Intra-generational wealth inequality & individual-level wealth mo-
bility
In this section, I investigate intra-generational (individual-level) within-cohort wealth accumu-
lation, inequality and mobility over the lifecycle. The lifecycle is split into working life (ages
30-54) and older age (ages 55-74). Section 5.1 presents within-cohort wealth shares and wealth-
to-income ratios. Section 5.2 elaborates on the determinants of the within-cohort wealth distri-
bution at the start of the lifecycle. Given their initial wealth ranks at ages 30-34, individuals’
wealth rank trajectories during working life and older age are investigated in Section 5.3 and

5.4 respectively. Section 5.5 compares wealth mobility outcomes across birth cohorts, while
Section 5.6 explores the timing of intra-generational wealth mobility.

Two sample restrictions are applied. First, I limit the working life and older age samples to
individuals with wealth rank observations in both the initial (30-34 or 55-59) and final stage
(50-54 or 70-74) of the respective lifecycle phase. To ensure a balanced panel, I recalculate the
within-cohort wealth ranks for these restricted samples. Second, the sample is further limited
to individuals in birth cohorts with a minimum of 250 observations for either K}Y or 1%]0 after
the first restriction is applied!’. The ¥- and Q-samples for the pooled data respectively contain
2524 and 3750 observations for working life, and 1534 and 2046 observations for the older age
phase. Note that the samples of individuals used for working life and older age are distinct,
with no overlap between the individuals of the two samples. Outcomes across the two lifecycle
phases are therefore only indirectly comparable.

Previewing the results, within-cohort wealth inequality is found to be stable over the lifecycle.
Wealth-to-income ratios rise around fivefold over working life, while wealth decumulation
during older age occurs only after age 65. The initial wealth distribution at ages 30-34 overlaps
significantly with the distribution of family wealth and distribution of cumulative inter-vivos
transfers and inheritances received at that point. Next, I report rank-rank coefficients and
transition probabilities. Intra-generational wealth mobility during older age is significantly
lower than during working life, and most intra-generational wealth mobility is found to occur
between ages 30 and 39. Finally, the data shows a negative correlation between within-cohort
wealth inequality (which has increased over time) and wealth mobility at the top 10% (which
has significantly declined over time).

10The cohorts that fulfill the minimum observation criterion include:
YWE = {PWE, 193645, 1946-55, 1956-65, 1966-75}
YOA = {PO4, 1916-25, 1926-35, 1936-45, 1946-55}

Here, PV and POA denote the pooled datasets for working life and older age respectively. These pooled datasets

contain all observations from the other cohorts.
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Figure 6: Wealth shares A, across lifecycle stages for birth cohorts € Y and € YO/ based
on actual wealth levels w?.
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Note: these plots show the within-cohort wealth shares for the bottom 50%, middle 50%-90% and top 10% wealthiest
at each lifecycle stage per birth cohort. The shares are calculated using working life and older age samples for actual
wealth levels w?. Given that the working life and older age samples contain different individuals, the wealth shares
are not directly comparable across the upper and lower panel. The pooled wealth share is computed as the average
of the wealth shares across the birth cohorts per lifecycle stage.

5.1 Wealth inequality & accumulation

Within-cohort wealth inequality remains roughly stable throughout the lifecycle, as shown by
the relatively flat profile of the pooled wealth shares in Figure 6. During working life, the top
10% wealth share fluctuates between 55% and 60%, while the bottom 50% own 0% to 5% of
total wealth. The top 10% wealth shares track closely the SCF-estimates of Bauluz & Meyer
(2024), although I do not find higher wealth inequality during the early stages of the working
lifecycle (ages 30-34), except for the 1966-75 cohort. During older age, pooled top 10% wealth
shares equal approximately 53% between ages 55 and 74, while the bottom 50% owns around
8% of total within-cohort wealth (Figure 6). This leaves an approximate wealth share for the
middle 50%-90% of 39%. The observed stability in within-cohort wealth inequality during
older age is also consistent with the results of Bauluz & Meyer (2024).
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The stability of within-cohort wealth inequality implies that wealth growth rates are similar
across the wealth distribution. During working life, wealth-to-income ratios increase around
fivefold for the bottom 50%, middle 50-90% and top 10% brackets (Figure 7). This substantial
accumulation of wealth over the working lifecycle leads to an increase in the fraction of high
wealth individuals from roughly 1% to 7%, and a decline in the proportion of low-wealth indi-
viduals from approximately 58% to 33% (Figure 22, Appendix H). During older age, all wealth
brackets exhibit additional wealth accumulation between ages 55 and 64, followed by wealth
decumulation between ages 65-74 (Figure 7). The 1946-55 cohort stands out to the others by
notably higher wealth to income ratios, and a higher fraction of high-wealth individuals (Fig-
ure 22 in Appendix H). This is likely related to the extreme asset price trajectories (Dotcom
bubble and Great Financial Crisis) experienced by this cohort at the end of its working life and
beginning of its older age.

Within-cohort wealth inequality has increased over time, in line with the SCF-estimates from
Bauluz & Meyer (2024). This follows from a cross-cohort comparison of wealth inequality out-
comes (Figures 6). For working life, two findings stand out. First, the 1966-75 cohort displayed
significantly higher wealth inequality at the start of the working lifecycle compared to the two
earlier cohorts (1946-55 and 1956-65), with wealth shares above 70%. In addition, the 1966-75
and 1956-65 cohorts experienced higher wealth inequality from ages 40 to 54 compared to the
1946-55 cohort. Second, for the two most recent cohorts (1956-65 and 1966-75), wealth shares
for the bottom 50% were significantly closer to zero compared to the 1946-55 cohort. This
likely follows from increased non-mortgage indebtedness in recent decades (e.g. Bartscher et
al., 2024). For older age, the two most recent cohorts (1936-45 and 1946-55) experienced higher
within-cohort wealth inequality than the 1926-35 cohort: the top 10% wealth share in the most
recent cohorts was at least 10%-points higher (at 63% and 56% for the 1936-45 and 1946-55
cohorts compared to 46% for the 1926-35 one). Accordingly, bottom 50% wealth shares in the
most recent cohorts lay substantially below those of the 1926-35 one (around 7% versus 11%).

5.2 Wealth distribution: ages 30-34

Around 60% of individuals at ages 30-34 have wealth levels lower than the annual average
labor income (Figure 22, Appendix H). Only around 1% of individuals display wealth levels
in excess of twenty times labor income. This suggests that approximately 39% of individuals
start off working life with wealth levels between one and twenty times average labor income.
This begs the question: where does this wealth come from?

While the structure of the data does not allow for a comprehensive accounting decomposi-
tion, it demonstrates that family wealth plays a critical role in determining the within-cohort
wealth distribution at ages 30-34: wealthy individuals at the start of working life tend to be-
long to wealthy families and are the most likely to have received an inter-vivos transfer or
inheritance. This overlap in individuals” wealth ranks at ages 30-34 with family wealth and
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Figure 7: Wealth-to-income ratios 6, across lifecycle stages for birth cohorts € Y and
€ Y/ based on actual wealth levels w?.

Working life: ages 30-54
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Older age: ages 55-74
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Note: these plots show the within-cohort wealth-to-income ratios for the bottom 50%, middle 50%-90% and top
10% wealthiest at each lifecycle stage per birth cohort. The ratios are calculated using working life and older age
samples for actual wealth ranks. Income is computed as average annual labor income. Given that the working life
and older age samples contain different individuals, the ratios are not directly comparable across the upper and
lower panel. The pooled wealth-to-income ratio is computed as the average of the wealth-to-income ratios across
the birth cohorts per lifecycle stage.
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inter-generational transfer receipts aligns with evidence from Boserup et al. (2018): these au-
thors find a similar overlap in Denmark, albeit for much younger individuals (at age 18). In
what follows, I quantify these findings in more detail.

Of the individuals in the within-cohort top 10% at ages 30-34, 55% have parents that belong
to the top 30% of their own cohort at that time. Furthermore, close to 30% of individuals in
the top 10% have already received an inter-vivos transfer or inheritance. This is higher than
for the middle 50%-90% (15%) and bottom 50% (8%). Total transfer receipts of the top 10% by
ages 30-34 make up around 50% of the total cumulative transfers received by individuals at
that stage. Instead, of the individuals in the within-cohort bottom 20% at ages 30-34, only 15%
have parents that belong to the top 30% of their own cohort at that time. Moreover, only 6%
of individuals in the within-cohort bottom 20% at the start of working life have received an
inter-vivos transfer or inheritance at that point.

5.3 Wealth mobility during working life

While wealth growth rates over the working lifecycle (ages 30-54) are broadly similar across
wealth brackets (Section 5.1), this conceals intra-generational mobility of individuals across
the within-cohort wealth distribution. That is, the within-cohort bottom 50%, middle 50%-
90% and top 10% are not fixed groups: significant turnover takes place over the lifecycle. In
what follows, I quantify the degree of wealth mobility during working life at the individual
level.

Overall mobility The rank-rank coefficient (based on ) in the pooled dataset between ages
30-34 and 50-54 equals 0.57 (Table 2). This finding is in line with Shiro et al. (2022), who
obtain a rank-rank estimate of 0.59 for the United States using a PSID-sample over the same
age span (30-54). The minor difference to my estimate likely follows from sample differences:
while I use the SRC-subsample in the PSID (as detailed in Appendix A), Shiro et al. (2022) use
this SRC-subsample in combination with the SEO-subsample and two immigrant subsamples.
Furthermore, Conley & Glauber (2008) produce a log-log estimate of 0.47 using a PSID sample
that spans twenty years. However, these authors” sample constitutes of individuals across a
broad spectrum of initial age levels, and is therefore not directly comparable to mine.

Two conclusions can be drawn. First, intra-generational wealth mobility in the United States
is significantly lower compared to the Nordic countries. Specifically, over the same age span
as this paper (30-54), Audoly et al. (2024) find a rank-rank coefficient slightly in excess of 0.20
for Norway. Moreover, Boserup et al. (2018) obtain a B-estimate of 0.22 for Denmark in a
study where individuals” wealth ranks at age 45 are regressed on those at age 18. Second, in
line with the inter-generational analysis, rank-rank coefficients based on proxy wealth ranks
underestimate the actual degree of intra-generational wealth mobility: the p-estimate based on
#? equals 0.66 (compared to the actual value of 0.57).
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Table 2: Fraction of individuals belonging to each of the discretionary groups (in %) and
rank-rank coefficients 8 across cohorts € Y based on actual wealth ranks x*.

Poor Groups (%) Wealthy Groups (%) 8
Steady Past New | Steady Past New

Pooled 9.2 3.8 3.5 4.1 2.9 2.3 0.57
(83,10.1) (2.6,50) (24,47) | (34,47) (2.0,40) (14,33) | (0.02)
1946-55 9.3 4.2 34 3.0 34 3.3 0.54
(7.9,106) (23,65) (1.8,54) | (2.0,39) (2.0,53) (1.6,54) | (0.03)
1956-65 9.5 3.2 3.6 4.3 2.8 1.9 0.57
(84,107) (18,47) (2.0,55) | (34,53) (1.4,44) (0.8,32) | (0.02)
1966-75 8.1 4.7 3.3 5.5 2.1 14 0.60
61,103) (20,84) (1.3,6.2) | (41,69) (09,45 (0.7,3.8) | (0.04)

Cohort

Note: this table reports the fraction of individuals in the sample belonging to each of the discretionary groups (in
%). Moreover, it reports rank-rank coefficients . These metrics are calculated with within-cohort wealth ranks
at stage 50-54 as dependent variable. The values are shown with confidence intervals for the discretionary group
shares and standard errors for the estimated rank-rank coefficients (in parentheses).

Figure 8: Ex-ante and ex-post transition matrices during working life (ages 30-54) for the
pooled dataset.

(a) Ex-ante: Tga(a) (b) Ex-post: Tgp(a)
100% 2 100% :
80% 80%
60% I91—100 60% I91-100
51-90 51-90

40% 1-50 40% 1-50
20% 20%

0% 0%

w\y v/\vﬂ W\y V/:/Q Wq} \;\VQ W\l} \;\VQ W\y VI\\[Q W\y VQ/Q
1-50 51-90 91-100 1-50 51-90 91-100

Note: these transition matrices compare the within-cohort wealth ranks of individuals in the working life sample
at ages 30-34 and ages 50-54. The ex-ante matrix shows individuals” wealth ranks at ages 50-54 given their initial
wealth rank at ages 30-34 (shown on the x-axis). Instead, the ex-post matrix shows individuals’ initial wealth ranks
at ages 30-34 given their final wealth rank at ages 50-54 (shown on the x-axis). The usage of the pooled dataset
indicates that individuals across all selected birth cohorts are included in the sample. The numbers in parentheses
display the 95% confidence intervals for the respective transition probability.
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Mobility at the bottom & top Rank-rank coefficients provide insight into intra-generational
wealth mobility across the entire wealth distribution, but do not show how broad-based mo-
bility over the lifecycle is. Next, I therefore report transition probabilities and hierarchical
clustering outcomes.

The pooled ex-ante transition matrix Tga (a), ex-post Tgp(a) transition matrix (Figure 8) based

on actual wealth ranks ¥ reveal that!!:

¢ At the bottom: 73% (75%) of individuals in the bottom 50% of their cohort at ages 30-34
still belong to the bottom 50% at ages 50-54. Conversely, 27% (25%) of the individuals in
the bottom 50% at age 30-34 displayed upward mobility during their working life, with
3% (1%) migrating to the top 10% of the distribution. Finally, 2% (1%) of the individuals
that end the working lifecycle in the bottom 50% originate from the within-cohort top
10% at ages 30-34.

¢ At the top: 41% (49%) of individuals in the top 10% at ages 30-34 have remained in this
wealth bin by ages 50-54. Conversely, 59% (51%) of the top 10% wealthiest at ages 30-
34 exhibit downward wealth mobility, with 12% (9%) falling to the bottom 50%. Last,
among those individuals in the top 10% at ages 50-54, 60% (51%) started working life in
the bottom 70%. 13% (6%) of the top 10% individuals at ages 50-54 began their working
life in the bottom 50% wealthiest.

These results have two key implications. First, overall mobility during working life is induced
by both wealth mobility at the bottom and at the top of the wealth distribution. Second, the
proxy wealth series’ bias in estimating wealth mobility relates both to the bottom and to the
top: the proxy ranks overestimate the persistence at the bottom (75% versus 73%), as well as
the persistence at the top (49% versus 41%).

Complementary evidence to the transition matrices and discretionary groups is provided by
the hierarchical clustering algorithm. Its application to the actual wealth series x* for working
life is presented in Figure 9 (panel a). Unlike for the discretionary groups, all individuals in
sample ¥ have been categorized into one of the six benchmark clusters. I report the proportion
of individuals in each cluster in parentheses. That is:

¢ Two immobile clusters at the bottom (45%): akin to the steady poor group, the steady bot-
tom cluster (25%) contains individuals that spend their entire working life in the vicinity
of the 20th wealth percentile. Instead, the steady supra-bottom cluster (20%) includes
individuals that display fluctuating wealth ranks between the 30th and 40th wealth per-
centile.

¢ Two mobile clusters (18%): akin to the new wealthy group, the average individual in the
strong risers cluster (8%) starts off around the 40th wealth percentile, exhibits a drastic

HThe transition probabilities based on proxy wealth & are reported in parentheses.
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Figure 9: Hierarchical clustering wealth rank trajectories for working life and older age for
the pooled dataset based on actual wealth ranks «*.

(a) Working life (ages 30-54) (b) Older age (ages 55-74)
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Note: the plots report the average within-cohort wealth rank trajectories of the individuals in the six hierarchical
clusters. The clusters have been computed through the hierarchical clustering algorithm described in the Online
Supplement using actual wealth ranks x* as input. I report cluster outcomes based on proxy wealth ranks in the
Online Supplement.

rise to the 70th wealth percentile by ages 40-44, and a slight further increase to above
the 80th wealth percentile thereafter. Instead, individuals in the moderate risers cluster
(10%) experience a more limited rise in their wealth ranks from below the 40th to around
the 60th wealth percentile.

¢ Two immobile clusters in the upper half of the distribution (37%): the steady middle
cluster (21%) contains individuals that spend their entire working lifecycle between the
60th and 70th wealth percentiles. Instead, akin to the steady wealthy group, the individ-
uals in the steady top cluster (16%) maintain a stable wealth rank around the 90th wealth
percentile throughout their working lifecycle.

Only a relatively small fraction of individuals (18%) displays significant wealth mobility over
working life. The remainder of individuals in the sample (82%) is relatively immobile. This
fraction of mobile individuals in the United States (18%) is lower than in Norway: Audoly
et al. (2024) find that 36% of the individuals in their sample display substantial upward or
downward mobility between ages 30 and 54. As a result, intra-generational wealth mobility
in the United States is lower than in Norway, which aligns with the conclusion based on rank-
rank coefficients.
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Figure 10: Ex-ante and ex-post transition matrices during older age (ages 55-74) for the
pooled dataset.
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Note: these transition matrices compare the within-cohort wealth ranks of individuals in the old age sample at ages
55-59 and ages 70-74. The ex-ante matrix shows individuals” wealth ranks at ages 70-74 given their initial wealth
rank at ages 55-59 (shown on the x-axis). Instead, the ex-post matrix shows individuals’ initial wealth ranks at ages
55-59 given their final wealth rank at ages 70-74 (shown on the x-axis). The usage of the pooled dataset indicates
that individuals across all selected birth cohorts are included in the sample. The numbers in parentheses display
the 95% confidence intervals for the respective transition probability.

5.4 Wealth mobility during older age

Having discussed wealth mobility during working life, I now move to the discussion of intra-
generational wealth mobility during older age (ages 55-74). This paper is the first to explicitly
study wealth mobility during this lifecycle phase.

Intra-generational wealth mobility during older age is found to be lower than intra-generational
wealth mobility during working life: the rank-rank coefficient estimate in the pooled dataset
equals 0.77 between ages 55 and 74 (Table 2), compared to 0.57 for working life (Section 5.3).
This finding holds also when accounting for the disparity in lifecycle time span: the estimated
rank-rank coefficients for a 20-year working lifecycle span equal 0.60 (for ages 30-49) and 0.68
(for ages 35-54), which are still significantly lower than the estimate for older age (0.76).

These findings should be approached with caution, however: the sample restrictions (see in-
troduction to Section 5) imply that older age wealth mobility moments are computed based on
a sample of individuals that are still alive by ages 70-74. This may introduce a selection bias:
individuals that have poor health and die prematurely (and are thus not included in the sam-
ple) could face downward wealth mobility due to high healthcare expenditures or as a result of
voluntary bequests. As this downward mobility will not be captured, the estimated rank-rank
coefficient (0.77) may underestimate the actual degree of wealth mobility during older age.
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The lower wealth mobility during older age compared to working life holds both at the bot-
tom and top of the wealth distribution. More precisely, the ex-ante Tga () and ex-post Tgp(a)
transition matrices (Figure 10) reveal that'?:

¢ At the bottom: 80% (81%) of the individuals in the bottom 50% at ages 55-59 still belong
to this bin by age 70-74. Of those displaying upward mobility, only 1% (1%) migrated
to the top 10% wealthiest. Roughly 1% (2%) of the individuals in the bottom 50% at age
70-74 started the older age phase in the top 10%.

* At the top: 61% (55%) of the individuals in the top 10% at the start of older age still
belong to this bin by age 70-74. 4% (8%) of the individuals starting at the top drop to the
bottom 50% of the wealth distribution. Finally, 3% (3%) of the individuals ending older
age in the top 10% started off in the bottom 50%.

The hierarchical clustering procedure underscores that wealth mobility during older age is
lower than during working life (Figure 9, panels a and b): while the older age cluster types
overlap with those from working life, the strong risers cluster is replaced by a strong droppers
cluster whose wealth ranks decline from right below the 80th to slightly above the 40th wealth
percentile. In addition, the steady middle cluster now lies closer to the top, with stable wealth
ranks around the 75th percentile. The relative occurrence of the cluster types also differs: in
older age compared to working life, the steady bottom make up 25% (versus 25%), the steady
supra-bottom 15% (versus 16%), the middle risers 17% (versus 10%), the strong droppers 6%
(versus 8% of stronger risers), steady middle 24% (versus 21%), and the steady top 13% (versus
10%).

Finally, the proxy wealth series approximates actual wealth mobility during older age more
accurately than during working life and across generations: the rank-rank coefficient estimate
based on proxy wealth (0.78) lies very close to the one based on actual wealth (0.77). Moreover,
the degree of persistence at the bottom and top align a lot more closely (81% versus 80% and
61% versus 55% respectively) than in previous sections of the paper. This better approxima-
tion during older age may relate to the lower importance of hard-to-capture variables such as
business returns and non-mortgage indebtedness during older age.

5.5 Timing effects

In this section, I investigate timing effects in intra-generational wealth mobility: is within-
cohort wealth rank mobility stronger at specific points of the lifecycle? The analysis relies
primarily on Figure 11, which presents rank-rank coefficients from a rolling window analysis.

Two key findings persist. First, individuals” wealth rank position at ages 30-34 is increasingly
less predictive of their current wealth rank as individuals progress through their lifecycle. Sec-
ond, the majority of wealth mobility over the lifecycle occurs between ages 30 and 39: the

12Results based on the proxy wealth data are reported in parentheses.
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rolling analysis based on w? reports a B-estimate of around 0.72 for the transition from stage
30-34 to 35-39. This is significantly lower than the 0.80—0.85 estimates for the other transitions
during working life and 0.85—0.90 for the transitions during older age. The timing effect is
corroborated by Figure 9 (panel a): the moderate risers and strong risers clusters for work-
ing life exhibit the majority of their mobility during the earlier stages of the working lifecycle,
particularly between ages 30 and 39. Additionally, the moderate risers and strong droppers
clusters for older age display gradual rather than abrupt shifts in wealth rank trajectories (Fig-
ure 9, panel b). The timing effect of intra-generational wealth mobility aligns with evidence
for Norway in Audoly et al. (2024).

The higher intra-generational wealth mobility between ages 30 and 39 holds both at the bottom
and top of the wealth distribution (Figure 23, Appendix H)!?. At the bottom, an individual in
the bottom 20% at stage 30-34 has a 56% probability of remaining in the bottom 20% by ages 35-
39 (steady poor). This probability increases to above 60% in the subsequent stages. Moreover,
the likelihood of moving from the bottom 20% to the top 50% between stages 30-34 and 35-39
equals 13% (past poor). It drops to below 10% for later transitions. Finally, the probability of
dropping to the bottom 20% when starting from the top 50% remains relatively stable at 8%-9%
throughout the working lifecycle (new poor). At the top, an individual in the top 10% at stage
30-34 has a 53% probability of still belonging to the top 10% by ages 35-39 (steady wealthy).
For later transitions, this probability consistently exceeds 60%. Furthermore, an individual
belonging to the top 10% at ages 30-34 has a 15% probability of dropping to the bottom 70% by
ages 35-39, which declines to below 8% for later transitions (past wealthy). Last, the probability
of rising from the bottom 70% to the top 10% declines from around 6% to 4% (new wealthy).

What are potential theoretical mechanisms underlying the timing effects in intra-generational
wealth mobility? First, absolute differences in wealth levels between individuals are signif-
icantly smaller at the start of working life (Section 5.1). This implies that given additive
shocks (labor income, inter-generational transfers, household formation) are expected to gen-
erate more substantial wealth mobility early in working life. Second, idiosyncratic investment
risk-taking is slightly stronger between ages 30 and 39, which follows from the peak observed
for conditional business portfolio shares at these ages (see Online Supplement). Third, equity
market participation is at its lowest at the start of the working lifecycle, which makes it more
likely that an individual will have heterogeneous aggregate investment risk exposures relative
to its wealth rank neighbors (Figure 18, Appendix G).

5.6 Cross-cohort differences

To investigate the time trend in intra-generational wealth mobility, I compare rank-rank coeffi-
cients B across birth cohorts based on actual wealth ranks x* (Table 2). Given that most wealth

13The patterns shown here are even more pronounced when using age group 25-29 as starting point, as shown
in the Online Supplement.
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Figure 11: Rolling window analysis for rank-rank coefficient .

(a) Working life: ages 30-54. (b) Older age: ages 55-74

0.95 0.95

0.90 090 e,
oss e 0.85

0.80 0.80
0.75 0.75
0.70 0.70
35-39 40-44 45-49 50-54 60-64 65-69 70-74
swe swhe g

Note: the rank-rank coefficient B is computed with E;_; as initial stage and Zj as final stage, where & denotes
working lifecycle stages and k € {1,2,3,4}. The reported data for stage k gives an indication of wealth mobility
outcomes between this stage k and the previous stage k — 1. For example, when k = 3, the cross-section of indi-
viduals’ within-cohort wealth ranks at ages 45-49 is regressed on the cross-section at ages 40-44. The shaded areas
display the 95% confidence intervals.

mobility occurs during working life and because of the lower sample size for the older age
phase, I present only the results for the working life phase.

Overall intra-generational wealth mobility has dropped over time, which reflects a substantial
decline in intra-generational wealth mobility at the top. Specifically, B-estimates are higher
in the 1966-75 birth cohort compared to earlier cohorts (0.60 versus 0.54), but this conceals
contrasting dynamics at the bottom and top of the wealth distribution. At the top, wealth con-
solidation during working life has increased significantly: the fraction of steady wealthy has
risen from 3% in the 1946-55 cohort to close to 6% in the 1966-75 cohort. This has coincided
with a strong drop in downward mobility from the top (the fraction of past wealthy has de-
clined from over 3% to close to 2%) and a decrease in upward mobility to the top (the fraction
of new wealthy has dropped from over 3% to below 2%). Instead, wealth consolidation at
the bottom during working life has declined, as evidenced by the declining fraction of steady
poor from roughly 9% to approximately 8%. This was accompanied by an increase in upward
mobility from the bottom (the fraction of past poor has risen from over 3% to close to 5%),
and a roughly stable degree of downward mobility to the bottom (the fraction of new poor has
fluctuated around 3.5%).

Together with the findings from Section 5.1, the data therefore points towards a negative corre-
lation between within-cohort wealth inequality and mobility at the top of the wealth distribu-
tion: the higher within-cohort wealth inequality in recent cohorts (Section 5.1) has coincided
with stronger wealth consolidation (and thus weaker mobility) among the top 10% wealthiest.
Instead, at the bottom, intra-generational persistence is found to have slightly declined over
time. The net effect on overall wealth mobility was negative as well.
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6 Within-family inter-dependence in intra-generational wealth mo-
bility
I have established that there exists significant inter-generational persistence in within-cohort
wealth ranks of parents and their children at identical points in their lifecycles (Section 4.1).
Moreover, individuals” within-cohort wealth ranks at the start of working life overlap signifi-
cantly with their parents” within-cohort wealth ranks at that time: the wealthiest individuals
at age 30-34 are the most likely to have wealthy parents (Section 5.2). In this section, I build
on these findings to investigate the third research question of this paper: does there exist inter-
dependence between the within-cohort wealth rank trajectories of individuals and those of

their parents (conditional on these being alive) as these individuals progress through working
life?

In short, the answer is yes: there seems to be inter-dependence between individuals” wealth
rank trajectories and those of their parents. Individuals who experience upward mobility from
the bottom and to the top in their cohort (past poor, new wealthy) are likely to have parents
that experience upward mobility in their own cohort as well. Furthermore, individuals that
experience downward mobility from the top (past wealthy) often have parents that encounter
downward wealth mobility also. Last, individuals that consolidate their position at the top
of the wealth distribution are the most likely to have wealthy parents throughout their entire
working life. These findings are quantified in Figure 12:

¢ Steady poor: throughout their working life, individuals that start and end working life in
the bottom 20% (the steady poor) face a slightly increasing probability (from 9% to 12%)
of having parents that belong to the top 30% of their within-cohort wealth distribution.
On the contrary, the probability of having top 10% parents remains close to 0%.

¢ Past poor: individuals that display upward mobility from the bottom 20% to the top 50%
of the within-cohort wealth distribution (the past poor) face a rising likelihood of having
very wealthy parents: while the likelihood of having top 30% parents remains stable
around 45%, the probability of having top 10% parents increases from 12% to 21%.

* New poor: for individuals that drop from the within-cohort top 50% to the bottom 20%,
there is little inter-dependence with parental wealth ranks: the likelihood of having top
30% parents remains relatively stable around 17%, and the probability of having top 10%
parents fluctuates between 0% and 5%.

¢ Steady wealthy: throughout their working life, individuals that start and end working
life in the top 10% (the steady wealthy) have a 68% to 75% probability of having parents
in the top 30% of their own within-cohort wealth distribution. Instead, the probability of
having top 10% parents remains roughly constant around 36% for these individuals.
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Figure 12: Inter-dependence between individuals” and their parents” wealth rank trajecto-
ries based on actual wealth ranks «*.
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Note: this plot uses the individuals from the working life sample defined in Section 5 of the paper. For a given
discretionary group, it computes (for each lifecycle stage) the fraction of individuals in that group that have parents
belonging to the top 10% and top 30% of their within-cohort wealth distribution at that historical point in time.
Individuals that have no parents are excluded from the sample. The shaded areas display the 95% confidence
intervals, which have been determined through bootstrapping.

¢ Past wealthy: individuals starting working life in the top 10% but dropping to the bottom
70% (the past wealthy) encounter a declining likelihood of having wealthy parents: the
probability of having top 30% parents drops from 37% to 33% throughout working life.
Furthermore, the likelihood of having top 10% parents declines from 15% to 7% by the
end of working life.

¢ New wealthy: individuals that display upward mobility from the bottom 70% to the top
10% over working life (the new wealthy) face a strongly rising likelihood of having top
30% parents as these individuals” working life progresses: the likelihood of having top
30% parents rises from 36% at ages 30-34 to 54% at ages 50-54. The probability of having
top 10% parents displays a relatively flat lifecycle profile between 19% and 23%.

Of course, this analysis does not take a stance on causality. For example, it may be that new
wealthy individuals share part of their newly accumulated wealth with their parents via inter-
vivos transfers (channel 1 in Section 2.3). On the contrary, the strong wealth accumulation
of new wealthy individuals may relate to a reversal in their parents’ fortunes that is trans-
mitted through inter-vivos transfers or other channels (see Section 2.3). Moreover, the inter-
dependence could be driven by exposures to identical sources of idiosyncratic risk, for instance
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a family business or a similar portfolio of stocks. A causal decomposition of the importance of
these effects is left to future research.

7 Sources of mobility: composition analysis

As a final step in this paper, I conduct a composition analysis to investigate the inter-generational
transfer receipts and socio-economic characteristics of individuals across the discretionary
groups and clusters. The composition analysis should be interpreted as an exploratory ex-
ercise: it does not disentangle the causal driving forces behind wealth mobility dynamics, nor
does it draw conclusions regarding the quantitative importance of the variables under consid-
eration. The infeasibility of causal and quantitative identification follows from the presence of
type and scale dependencies in families” and individuals” behavioral parameters. These cre-
ate endogeneity between wealth accumulation and individuals” socio-economic characteristics
(see Section 2.3). As an example, suppose one observes in the data high business ownership
rates among the wealthiest individuals. This could relate to the easier access to business fi-
nancing that wealth enables (a scale dependence). However, it could also reflect that only a
subset of individuals hold valuable entrepreneurial ideas, generating higher wealth positions
for these individuals over time (a type dependence).

The analysis is conducted on the intra-generational working life sample and therefore focuses
on the sources of intra-generational (individual-level) wealth mobility over the working lifecy-
cle. However, the Online Supplement demonstrates that the intra-generational findings extend
to two-generational (family-level) mobility: the sources of inter-generational wealth mobility
are found to be equivalent to those of intra-generational wealth mobility. This observation
makes sense intuitively: as individual wealth ranks at ages 30-34 overlap to a large extent with
family wealth ranks (Section 5.2), reversals in individuals” fortunes over the lifecycle gener-
ate similar reversals from an inter-generational perspective (at the family level). Furthermore,
the Online Supplement shows that families consolidating their position at the bottom or top
over two generations exhibit highly similar socio-economic characteristics between parents
and children at the same age. Only for families with high (upward or downward) inter-
generational wealth mobility do children’s composition metrics diverge from those of their
parents. This aligns with a literature documenting inter-generational persistence in socio-
economic characteristics (e.g. Adermon et al., 2021; Charles & Hurst, 2003; Fagereng et al.,
2021; Lindquist et al., 2015)14.

In what follows, I first define the individual-level composition metrics used, and subsequently
present the key findings with respect to inter-generational transfers and socio-economic char-
acteristics. The latter are visualized in Appendix G. Given the top wealth bias of the PSID (see
Section 3.2), the findings in this section relate to the entire wealth distribution and have little

14Some of the papers in this literature also disentangle the role of pre- versus post-birth factors using data for
adoptees. In the PSID, such strategy is hard to implement due to the lack of extensive adoptee data.
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say on the wealth accumulation dynamics of the very top wealthiest (top 1% and beyond). The
composition of these very top wealthiest are the focus in for instance Konig et al. (2023) for
Germany and Hubmer et al. (2024) for Norway.

Composition metrics The composition analysis is executed based on various individual-level
metrics, detailed in Appendix F. The metrics are organized into four categories. First, a la-
bor income and saving category calculates within-cohort labor income ranks, gross saving
rates, non-mortgage debt participation and non-mortgage debt-to-income ratios (conditional
on holding non-mortgage debt). Second, an asset ownership and allocation category com-
putes homeownership, equity ownership, unincorporated business ownership, incorporated
business ownership and mortgage participation rates. In addition, it calculates housing, eq-
uity, business and mortgage allocations relative to total assets (conditional on participation in
the respective asset or debt market). Third, the health and household status category calculates
whether an individual belongs to a household where at least one member has poor health and
whether the individual is single, in a relationship or married. Fourth, the inter-vivos transfers
and inheritances category assesses whether the individual has received an inter-generational
transfer at any point in its lifecycle, and computes the ratio of its cumulative (capitalized) trans-
fer receipts to its lifetime resources, in line with Black et al. (2022). Lifetime resources are de-
fined as the cumulative sum of (capitalized) labor income!®. These individual-level measures
are summarized over the set of individuals in a discretionary group or cluster, as outlined in
Appendix F.

Inter-generational transfers Inter-vivos transfers and inheritances are associated with wealth
persistence at the top during working life. At ages 30-34, the wealth and cumulative transfer
distributions overlap: top 10% individuals have received substantial transfers already, while
the bottom 50% have hardly received any (see Section 5.2). Over their lifecycle, individuals
consolidating their position at the top (steady wealthy, steady top) receive additional trans-
fers: the proportion of recipients among these individuals rises to 60%-65% by ages 50-54, and
their receipts make up around 11%-16% of lifetime resources at these ages. On the contrary,
among the individuals stuck at the bottom (steady poor, steady bottom), the proportion of
recipients rises to at most 20% by ages 50-54, and their receipts constitute a mere 4%-6% of
lifetime resources.

The association between inter-generational transfers and upward wealth mobility is weaker. In
comparison to the median American, past poor and new wealthy individuals are more likely to
receive transfers (40%-45% by ages 50-54), which additionally comprise a more significant frac-
tion of their lifetime resources (13%-14% by ages 50-54). It is therefore possible that these two
groups include individuals that belong to wealthier families, but received inter-generational

15Unlike in Black et al. (2022), I do not include government transfers as part of lifetime resources. This as-
sumption may induce an upward bias in the inter-generational transfers to lifetime resources variable for poorer
individuals.
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transfers only later in life relative to the steady money and steady top. Alternatively, these
individuals” parents may have experienced favorable reversals in their fortunes only later in
their lifecycle. On the contrary, the strong risers cluster is not linked with unusually high
transfer receipts (approximately 6% of resources by ages 50-54).

Of course, these arguments do not by definition imply that these inter-vivos transfers and
inheritances (their relative absence) are critical in consolidating individuals” position at the
top (at the bottom). In fact, the inverse conclusion prevails: even for the wealthiest individuals
their cumulative receipts constitute a limited fraction of lifetime resources (at most 16%). How-
ever, the comparatively high inter-generational transfer receipts of the consistently wealthy do
indicate that these individuals are more likely to belong to wealthier families (in line with the
finding in Section 6). They may therefore have benefited from their parental wealth through
other channels (channels 2-5 in section 2.3). The apparent minimal importance of inter-vivos
transfers and inheritances in generating inter-generational wealth persistence (the first channel
in Section 2.3) aligns with other evidence for the United States (Charles & Hurst, 2003; Pfeffer
& Killewald, 2018) and with results for Norway (Audoly et al., 2024). However, it contradicts
tindings for Sweden (Adermon et al., 2018).

Nonetheless, this conclusion regarding the minimal importance of inter-generational transfers
warrants caution. There are two reasons for this. First, the PSID contains survey data, and is
therefore prone to under-reporting of inter-generational transfers. On top of that, the transfer
variable in the PSID likely suffers from a significant downward bias due to the irregular struc-
ture of the PSID survey waves (see Appendix F for a detailed explanation). Second, the timing
of inter-generational transfers matters if there exist scale dependencies in individuals” behav-
ior. For example, an early receipt of transfers may enable individuals to allocate higher frac-
tions of their assets to high-return assets such as housing or businesses (e.g. Lee et al., 2020).
In expectation, such early receipt of inter-generational transfers may therefore generate higher
wealth accumulation over these individuals” lifecycle. Whether there actually exists hetero-
geneity in the timing of transfer receipts across individuals in the United States and whether
such timing affects individuals” wealth rank trajectories over the lifecycle are questions that I
leave to future research.

Socio-economic characteristics Persistence at the top (steady wealthy, steady top, steady
subtop) is linked to high labor income, with individuals in these groups and clusters consis-
tently belonging to the top 40% highest labor income earners over working life. High labor
income is also associated with upward wealth mobility (past poor, new wealthy), although the
evidence does not extend to the strong risers cluster. Instead, persistence at the bottom (steady
poor, steady bottom, steady supra-bottom) and downward mobility to the bottom (new poor)
are linked with low and declining ranks in the labor income distribution throughout working
life. These results relate to Charles & Hurst (2003), who find that inter-generational income
persistence explains half of the inter-generational persistence in wealth in the United States.
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Their results are in line with those for the United Kingdom (Davenport et al., 2021; Levell &
Sturrock, 2023). For the Nordic countries, Audoly et al. (2024) find human capital to be the
main predictor of individuals’ falling and rising over the wealth distribution (for Norway).
Instead, Adermon et al. (2018) obtain that earnings and education only account for a quarter
of two-generational wealth persistence (for Sweden).

Business ownership is linked to consolidation at the top (steady wealthy, steady top) and to
significant downward mobility (past wealthy, middle decline, new poor). This suggests that
business ventures can sustain or break individuals” and families” positions in the wealth distri-
bution. The association between business ownership and upward wealth mobility is inconclu-
sive, however: business ownership is clearly linked with the new wealthy, but not particularly
with past poor or strong risers individuals. Matching evidence is provided for Norway: even
though Audoly et al. (2024) do not find a marked role for business ownership in generating
upward wealth mobility during working life, their results do show a clear correlation with
consolidation at the top and downward wealth mobility. For the United States, both Charles
& Hurst (2003) and Pfeffer & Killewald (2018) establish that business ownership has a non-
negligible impact on inter-generational wealth persistence.

Individuals that are wealthy over the lifecycle (steady wealthy, steady top, steady subtop) or
rise to the top (new wealthy, strong risers) display higher equity ownership rates compared
to poor individuals. This relates to Charles & Hurst (2003), who find that equity ownership
contributes significantly to inter-generational wealth persistence. Moreover, while homeown-
ership and wealth ranks are positively correlated, wealthier individuals display lower condi-
tional housing allocations. The disparity between the wealthy and poor is less pronounced
for conditional equity allocations. Finally, persistence at the bottom (steady poor, steady bot-
tom) and downward wealth mobility (new poor, past wealthy) are associated with poor and
deteriorating health, a high likelihood of belonging to single households, and elevated and
increasing non-mortgage indebtedness over the lifecycle.

8 Conclusion

Even though there exists an extensive body of research on social and income mobility, research
on wealth mobility over the past decades is very limited. In this paper, I fill this gap for the
United States by studying inter- and intra-generational wealth mobility using data from the
Panel Study of Income Dynamics (PSID). The paper starts by providing two methodological
contributions. First, I harmonize and validate the PSID-dataset. I argue that the PSID can
be effectively used to study wealth-related questions, in particular those that relate to wealth
mobility. Second, I construct a proxy wealth rank series using a gradient-boosting machine
learning model that improves the housing proxies used in the literature. Throughout the pa-
per, it is demonstrated that these proxies provide a useful tool for extending wealth mobility
analyses across generations, although they underestimate the actual degree of wealth mobility.
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Building on these two methodological contributions, I then formulate and provide insight into
three research questions.

First, I study inter-generational (family-level) wealth mobility from a static perspective, com-
paring individuals” within-cohort wealth ranks to those of their parents and grandparents at
specific lifecycle stages. In addition to providing a rich set of empirical moments and con-
trasting these to existing studies, I show that two-generational wealth mobility has declined
over time and that inter-generational wealth mobility in the U.S. is lower than in most other
countries with available data. Moreover, wealth mobility across three generations exceeds the
mobility across two generations, although this effect is significantly stronger for mobility at
the top than for mobility at the bottom. Finally, wealth rank resemblance between parents and
their children increases with age (parent-child lifecycle bias), while wealth rank resemblance
between grandparents and their grandchildren is higher when grandchildren are older than
35 years (grandchild lifecycle bias).

Second, this paper investigates intra-generational (individual-level) wealth inequality and mo-
bility given the initial wealth rank distribution at ages 30-34. Within-cohort wealth inequality
is found to be roughly stable over the lifecycle. Next, having provided a broad set of empirical
moments, I show that intra-generational wealth mobility at the top has declined over time,
and that the majority of wealth mobility occurs between ages 30 and 39. In addition, intra-
generational wealth mobility is lower than in other countries with available data (in this case,
the Nordic countries). Moreover, the composition analysis shows that persistence at the top is
associated with the most substantial inter-vivos transfers and inheritances receipts. Individu-
als that are stuck at the bottom stand out by an overall absence of inter-generational transfers.
Business ownership is linked with persistence at the top and downward mobility, while its
association with upward mobility is inconclusive.

Third, this paper is the first to show that there exists inter-dependence between the within-
cohort wealth rank trajectories of individuals and those of their parents (conditional on these
being alive) over the same historical time period as individuals progress through working
life. Specifically, individuals that face upward mobility from the bottom and to the top in
their cohort are likely to have parents that encounter upward mobility in their own cohort
as well. Vice versa, individuals that experience downward mobility from the top are likely
to have parents facing downward wealth mobility also. Last, individuals that consolidate
their position at the top are the most likely to have wealthy parents. These findings suggest
the presence of altruism across generations and the exposure of parents and their children to
identical sources of idiosyncratic risk.
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A Data
A.1 Waves & samples

This paper uses data from the Panel Study of Income Dynamics (PSID), which was conducted
annually between 1968 and 1997, and bi-annually from 1999 until 2021. All waves infer about
households’ gross main housing value, gross main housing mortgage debt and rents paid. The
waves in 1984, 1989, 1994 and 1999-2021 add to this questions about other assets and debts,
allowing to define households” wealth.

The original 1968 PSID-sample consists of two independently drawn subsamples: (1) the SRC-
subsample (Survey Research Center): a nationally representative sample of households, and
(2) the SEO-sample (Survey of Economic Opportunities): an over-sample of low-income fami-
lies. In 1990, a Latino subsample was added to the PSID, but this sample was dropped again
from 1995 onwards. In 1997 and 2017, the PSID was permanently augmented with two rep-
resentative immigrant subsamples to reflect the changing composition of the U.S. population.
For each of these four subsamples, the PSID tracks over time the individuals belonging to the
original set of households. In addition, it tracks individuals that descended from these original
individuals, as well as non-sample individuals that entered the PSID through their connection
to the former (e.g. a relationship or marriage).

The default in economic research using PSID-data is to focus on the SRC-subsample (e.g.
Cooper et al., 2019; Heathcote et al., 2010; Kaplan et al., 2014; Straub, 2019). The SEO-subsample
and the immigrant sub-samples are thus typically excluded from the analysis. In this paper,
I follow this approach. As a robustness, I include the two representative immigrant samples
from 1997 and 2017 onwards. The results for this alternative sample are presented in the On-
line Supplement. It shows that the conclusions of this paper are robust to the inclusion of these
two immigrant samples.

Let us define the two core samples used in this paper. Denote N as the total number of house-
holds that to have responded to the PSID-questionnaires in at least one year between 1969 and
2021. Moreover, let us denote a specific household by subscript i. We have:

Ta = {1969,1970, . ..,1997,1999,2001, . ..,2021} €)
Q={1t)0i=1,2,...,N, t€Ta} (4)

where 7, is the set of years corresponding to full sample Q) and I denotes the vector of PSID
variables that are available over 7. 1968 is excluded from the sample due to the high number
of outliers for this year. In addition, we can write:

Ty = {1984,1989,1994,1999,2001, . ..,2021} (5)
Y={1f(t)|i=1,2,...,N, tc Ty} (6)
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where Ty is the set of years corresponding to reduced sample ¥ and I} the vector of PSID
variables that are available over Ty. It holds that I = [IQ,I‘D], where I?® is defined as the
vector of additional variables exclusive to sample Y.

A.2 Definitions

Unit of analysis The unit of analysis in the PSID-questionnaires is the family unit. Pfeffer
et al. (2016) argue that the family unit may not always be equivalent to the household unit.
For example, when an adult child that previously lived outside of the parental home moves
back into the parental home, it will still be considered as a separate family unit even though
its financial decisions, financial flows and wealth levels may be intertwined with the parents’
ones. Still, this is more often than not a temporary situation, and it seems likely that at least
some independence in financial decision-making, flows and wealth levels is maintained. For
that reason, I do equate family units to households.

Wealth & wealth ranks In full sample (), the wealth categories are limited to gross main
housing (#) and main housing mortgages outstanding (). Non-homeowners are asked to re-
port their rental payments (r). In contrast, reduced sample ¥ extends the PSID by including
questions about a broader range of assets and debts. Beyond gross main housing, the asset cat-
egories encompass business holdings, equity holdings, fixed-income holdings, pension wealth,
and gross other housing. On the liabilities side, besides main housing mortgages outstanding,
households report the value of other housing debt and non-mortgage debt. I define house-
hold wealth w as the total of all asset categories minus the total of all debt categories. For a
household i at time ¢, wealth is computed only if values are reported for every asset and debt
category. If any category is missing, the household is considered a non-respondent at .

To study wealth mobility, the ultimate interest lays in households” wealth ranks, denoted as
. Let N(f) represent the total number of responsive households at time ¢, with their wealth
levels given by wy (t), wa(t), ..., wy)(t). I define the wealth rank «;(t) for household i at time
t as:

100 x (1 + Lty Hw(h) < wi(t)))

Ki(t) = N, )

where 1(wy (f) > w;(t)) is an indicator function equal to 1 if wy(f) > w;(t) and 0 otherwise. |- ]
denotes a ceiling function, which ensures the rank is placed into an integer bin from 1 to 100.
Since the wealth variable w is defined exclusively in sample ¥ (w € I®) the same applies to «:
K € I°.

Outliers & non-response The wealth-related sections of the PSID face two primary chal-
lenges. First, there is significant non-response, as shown in Figure 13. This issue is partially
mitigated through the use of bracketing. Given that such bracketing effectively reduces non-

54



Figure 13: Fraction of non-respondent households with and without bracketing applied.
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Note: this plot displays the fraction of households in each year that responded to the PSID-survey but displayed
non-response for at least one wealth category. As a result, their total wealth for that year is undefined. The fraction
of non-responsive households is shown for the dataset without bracketing applied and the dataset with bracketing
applied. In 1989, non-response was close to zero.

response (Figure 13), I apply it whenever available. The details of the bracketing procedure are
provided in Appendix B. Second, asset- and debt-related variables in ¥ are not harmonized
over time, and both the reduced sample ¥ as the full sample () exhibit measurement errors.
To address this, I have carefully aligned wealth categories across time periods, as discussed in
Appendix B. Moreover, I have applied different outlier-correction procedures. These include
on the one hand variable-specific outliers (see Appendix B) and on the other hand general
outlier-correction procedures (see Online Supplement).

A.3 PSID-validation

In what follows, I validate the PSID by comparing its time trajectories for aggregate wealth
(and its underlying components) to the trajectories for these variables in the top-wealth-adjusted
Survey of Consumer Finances (SCF) (Figure 14). Furthermore, I set side by side the wealth
shares observed in the PSID to those seen in the SCF (Figure 15).

With respect to aggregate wealth, the PSID systematically underestimates all wealth categories
compared to the SCF (Figure 14). This is consistent with previous findings (e.g., Pfeffer et al.,
2016; Insolera et al., 2021). The underestimation is particularly strong for net business hold-
ings. However, crucially given this paper’s focus on wealth mobility, the PSID does accurately
capture the time evolution of wealth and its underlying categories.

In addition, the evolution of wealth shares in the PSID aligns closely with those of the SCF: both
databases indicate a slight increase in overall wealth inequality since the early 1980s (Figure
15). However, as noted in previous studies (e.g., Pfeffer et al., 2016; Cooper et al., 2019), the
PSID underestimates top wealth inequality. For instance, in 2019, the top 10% wealth share
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Figure 14: Average wealth levels per household (for total wealth and its underlying cate-
gories).
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Note: these plots report the aggregate holdings of wealth and its different underlying categories, averaged across
households. The outcomes are compared across the PSID and SCF databases over time.
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Figure 15: Wealth shares (in %) in the PSID and SCF databases.
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Note: these plots report the share of three commonly used wealth brackets (the bottom 50%, middle 50%-90%
and top 10%) in aggregate wealth over time. I report outcomes both for non-pension wealth and for total wealth
(consisting of non-pension and pension wealth). The wealth shares in the PSID are set side to side to those in the
SCE.

(including pension wealth) equaled 62% in the PSID, compared to 77% in the SCF. The same
top-wealth bias is observed when comparing the fraction of low- and high-wealth households
in the PSID versus the SCF (see Online Supplement).

What explains this discrepancy between the PSID and SCF? While the SCF adjusts its nation-
ally representative sample by oversampling at the top of the wealth distribution, the PSID does
not. To address this, the PSID could in principle be supplemented with data from the Forbes
400 to better approximate top wealth (as is done for the distributional national accounts of
Saez & Zucman (2016)). However, there are two key reasons against this approach. First, the
composition of the Forbes 400 changes annually. Incorporating rich-list data into a wealth mo-
bility study across the entire wealth distribution would therefore require making assumptions
about the households that entered or exited the Forbes 400 during the period under consider-
ation. This would introduce significant uncertainty into the wealth mobility analysis. Second,
the primary focus of this paper is wealth mobility rather than wealth inequality. For wealth
mobility measures, the number of households across the wealth distribution serves as the key
calculation input. Excluding a small number of high-wealth households has a minimal impact
on these outcomes. In contrast, wealth inequality metrics rely on the total wealth owned by
households as the main calculation input. In such setting, excluding a small number of high-
wealth households disproportionately skews the results downward. Therefore, correcting for
top wealth is less critical in the context of this paper’s focus on wealth mobility.
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B Data definitions, outliers & non-response

B.1 Bracketing

Responding families in the PSID are occasionally unaware of the exact value of their wealth
variables. In that case, for some years and variables, bracketing questions are provided. As an
example, let x be the variable of interest, and let x;, x, denote the thresholds, where it holds that
x1 < x2. Using the answers to the bracketing question, I allocate x to one of the following three
intervals: [0, x1[, [x1, x2[ and [x2, +oo[. For the first two brackets, the actual x-value is estimated
using the average of the lower and upper bound. For the last bracket, the estimate is calculated
as x, + 3xo. When available, I apply this bracketing procedure for missing observations. In the
Online Supplement, I have verified that the findings of this paper are robust to whether or not
the bracketing procedure is applied.

B.2 Variable-specific definitions & outliers

B.2.1 Housing-related wealth categories

Main housing & rent Main housing mortgages outstanding are not reported in the years

1973-1975 and 1982. These are interpolated as follows. First, for all non-missing years in (),
hi(t)

m;(t) "
(specified in the Online Supplement) is applied to the mortgage ratio over the missing years in
Q). Third, given the observed h;(t), the interpolated value for h"v(t)

m; ()
the missing years in ().

I compute the mortgage ratio as Second, a distance-weighted interpolation procedure

is used to trace out m;(t) for

For the period 1969-1992, rental payments by renter households are reported on an annual ba-
sis. Instead, for the period 1993-2021, they are disclosed on a monthly basis. I define rents r
on an annual basis, and therefore annualize the values for the latter period. In addition, rental
payments are not provided for the years 1988-1989. These missing values are interpolated
using a distance-weighted linear interpolation (specified in the Online Supplement). Further-
more, in 1970, reported rents for a select subset of homeowners takes on the value '768’. These
outliers are set to their correct value of zero.

Other housing For the period 1984-2011, other housing is reported net of mortgage debt.
Instead, for the period 2013-2021, gross other housing and mortgage debt on other housing
are reported separately. To compute portfolio allocations (in Appendix F), our interest lays
in the gross representation. I therefore calculate the average mortgage ratio on other housing
conditional on ownership using data from the Survey of Consumer Finances (SCF) from 1989
to 2019. This mortgage ratio is found to equal 52 percent. I then use this ratio to trace out
approximations for gross other housing and mortgages outstanding on other housing for the
period 1984-2011.
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B.2.2 Nomn-housing wealth categories

Business & equity For the period 1984-2011, business holdings are reported net of business
debts. Instead, for the period 2013-2021, gross business assets and debts are reported sepa-
rately. Between 2013 and 2021, I therefore compute the net measure. Additionally, there exist
a handful of observations for net business holdings that take on unrealistically large negative
values (for one survey wave only). These outliers are set equal to zero.

Equity holdings are defined as the cumulative value of stocks in publicly-traded corporations,
stock market mutual funds or investment trusts. However, in the period 1984-1997, this vari-
able also includes holdings of stocks in IRAs. Similar to business holdings, there are a handful
of observations that take on unrealistically large negative values for one survey wave only.
These values are corrected to zero.

Fixed income For the period 1984-1997, fixed income is computed as the sum of two survey
questions. In a first question, labeled as ’baseline fixed income” in the variable codes in the
Online Supplement, households report the cumulative value of their checking accounts, saving
accounts, money market fund holdings, certificates of deposits, government savings bonds
and Treasury bills, including those held in IRAs. In a second question, labeled as “other” in the
Online Supplement, the household is asked about the cumulative value of any other assets,
including bond funds and cash value of lifecycle insurance values. For the period 1999-2017,
there exists a minor difference: the questions are the same as for the 1984-1997 period, but fixed
income IRAs are now inferred about in a separate question and are therefore excluded from the
fixed income variable. This shows up as a minor trend-change for the fixed income variable
in 1999 (Figure 14). Finally, for the period 2019-2021, the 'baseline fixed income” question is
split up into two separate questions: on the one hand a question on checking accounts, saving
accounts and money market funds, and on the other hand a question on certificates of deposits,
government bonds and treasury bills. The “other” question remains unchanged. For the period
2019-2021, fixed income is then computed as the sum of the reported values over the three
questions (two baseline fixed income questions and the other question).

B.2.3 Pension wealth

Pension wealth is calculated as the sum of (1) defined contribution plans, and (2) IRAs and pri-
vate annuities. On the one hand, defined contribution account values are reported only from
1999 onwards and equal the sum of the reported values in defined contribution accounts held
by the reference person and by the partner. These comprise not only the plans held with the
current employer, but also those held with the two previous employers from both individuals.
On the other hand, as noted earlier, IRA-and private annuity wealth are inferred about in a
separate question from 1999 onwards. This structure implies that pension wealth prior to 1999
will equal zero (Figure 14). Also for pension wealth, in some years, there are one-off outliers
that take on a negative value of multiple billions. These are set equal to zero.
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Figure 16: Ratio of pension to total wealth across the non-pension wealth distribution.
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Note: these plots display the ratio of pension wealth to total wealth across three wealth brackets: the bottom 50%,
middle 50%-90% and top 10%. Households have been allocated to the one of the three brackets based on their rank
in the non-pension wealth distribution. For the PSID, pensions equal zero prior to 1999 given that pensions are not
inquired about in the PSID-questionnaire for these years.

There exist two difficulties related to the measurement of pension wealth. First, IRA wealth is
included in equity and fixed income questions prior to 1999, and inferred about in a separate
question from 1999 onwards. There does not exist a straightforward method of separating the
IRA-proportion of the equity and fixed income questions prior to 1999, nor a reliable method
of allocating IRA wealth to equity and fixed income afterwards. Therefore, I keep IRA wealth
as part of the equity and fixed income variables prior to 1999, and include it in pension wealth
from 1999 onwards. As this discrepancy affects only the portfolio share calculations and not
households” total wealth levels or ranks, its impact on the findings in this paper is minimal.
Second, from 1999 onwards, defined contribution plan wealth is included in the calculation
of w, while it is not in the years prior. As our ultimate interest lays in wealth ranks x, this
shift may be problematic insofar as there exists heterogeneity in pension wealth across the
non-pension wealth distribution. Figure 16 shows that this heterogeneity is relatively limited:
the share of pension to total wealth displays roughly similar levels and time-trajectories across
the wealth bins. Nevertheless, as a robustness, in the Online Supplement I show that the main
conclusions of the paper continue to hold when restricting the wealth variable to non-pension
wealth.

B.2.4 Non-mortgage debt

In the period 1984-2009, the PSID captures non-mortgage debt through a variable "other debt’.
In 2011, the ‘other debt’ variable is subdivided into credit card debt, student loan debt, medical
debt and debt to relatives. I then calculate non-mortgage debt as the sum of these four cate-
gories. In the period 2013-2021, a residual debt category is added to the four categories from
the 2011-wave. I include it as part of non-mortgage debt. This shift in definitions implies that
the underlying non-mortgage debt variable may be slightly different across the three periods.
In particular, the absence of a residual category in 2011 might imply a minor underestimation
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of non-mortgage debt compared to the other years. However, the impact of this exclusion is
marginal, as evidenced by the absence of a major trend-shift for non-mortgage debt in 2011
(Figure 14).
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C ML-proxies over the full sample ()

C.1 Framework

Data on wealth w is available over the reduced sample 7y, which begins only in 1984. This
leads to two limitations. First, it restricts a comparison of wealth mobility outcomes across
birth cohorts. Second, it limits the feasibility of an inter-generational wealth mobility analysis,
particularly in examining grandparent-grandchild wealth linkages (across three generations).
However, gross main housing value & (for homeowner households) and rental payments r (for
renter households) are available over the full period 7q. To approximate wealth over the entire
period 7q, it is therefore common to estimate wealth based on & or r:

(8)

1

29(1) — { SaGa)(6) - if hi(t) > 0

)2t ifhi(t) =0
() = w;(t) | t € To, represents the predicted wealth level over 7. For homeowners,
wealth is approximated by multiplying the observed main housing value h$}(t) (available for
t € Tq) by a scaling factor f;. For renters, wealth is approximated in parallel using observed
rental payments r¢’(t) and a scaling factor f,.

where

While h{}(t) and r(t) constitute variables that are directly observable, the scaling factors f,
and f, need to be estimated as a function of some vector of input variables available over 7Tp,.
Let us define these input vectors as xp, = x4 (t) = xp;(t) | t € T for homeowners and

xr = X2 (t) = X (t) | t € T for renters.

C.2 Common assumptions

Existing literature (e.g. Chetty et al., 2020; Pfeffer & Killewald, 2018) makes the assumption
that f, = C and f, = 0, where C is some fixed number such as the average or median wealth-
to-gross main housing value ratio in the sample. Mathematically:

0 ifhi(t) =0 ®)

29(1) = {Ch?(t) if i(t) >0
implying that total wealth is approximated as main housing value for homeowners, while
renters are assumed to have zero wealth. When studying wealth mobility — where the interest
lays in wealth ranks rather than absolute wealth levels — the correctness of this approach
hinges on the assumptions of (1) main housing values being positively correlated with wealth
levels, (2) this relationship being stable over time, and (3) renters having zero wealth.

For the first assumption, the Pearson correlation coefficient in the PSID between gross main
housing value and wealth over ¥ equals 0.66. However, there exists substantial heterogene-

62



ity in the homeowner scaling factors across households: the standard deviation of this variable
equals 2.23. This suggests that the constant C constitutes a strong simplification. For the second
assumption, while the median renter scaling factor indeed equals 0, a non-negligible propor-
tion of renter households reports positive wealth levels. Furthermore, there exists significant
heterogeneity in wealth levels among renters: the standard deviation for the renter scaling
factor equals 10.03.

As a result, the proxy in Equation 9 can be improved by accounting for household heterogene-
ity in homeowner and renter scaling factors. To address this, in Section C.3, I estimate two
machine learning (ML-models) that incorporate additional household-level information avail-
able in the PSID-dataset in full sample (). In Section C.4, I define four housing proxies, which
represent variations to Equation 9. These serve as benchmarks against which the performance
of the ML-models can be compared in Section C.5. The results demonstrate that the ML models
significantly outperform the housing proxies.

C.3 ML-models

In what follows, I construct and estimate a gradient-boosting (GB)-model to predict scaling
factors f), and f,. Additionally, in the Online Supplement, I develop an alternative ML-model
— a multi-layer perceptron (MLP) model — to which the performance of the GB-model can
be compared. Both ML-models are trained and tested on observable sample ¥, and estimated
for homeowners and renters separately. Their inputs x, and x, consist of household-level
variables available over the full sample period 7n. The models can then be used to make
predictions over 7g.

The construction of the ML-models proceeds in three steps. First, I define the inputs x; and
x; used by the models. Second, I outline the equations of the (homeowner and renter) GB-
model, with a detailed derivation provided in the Online Supplement. Cross-validation is
employed to determine the optimal hyperparameters. Thereafter, the GB-model is estimated.
The full development of the (homeowner and renter) MLP-model is presented in the Online
Supplement also. Third, I perform a series of diagnostic tests on ML-model outcomes, with
the procedures and results again described in the Online Supplement.

Input variables The selection of the input variables x, and x; occurs according to two criteria.
A first criterion is availability: the variable should be available over the full period 7q, or
equivalently x € I}(t). Due to the limited number of variables in I*(t), this criterion imposes
a relatively strong restriction. A second criterion is relevance: the variable should contribute
to the predictive performance of the ML-models. Based on these two criteria, and defining
A,B,C € R, A,B,C < oo, the following input variables are selected for the homeowner and
renters ML-models:
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yi((t)) .
yt) -
income across all households 7(t).

2. Capital income Zy’((:)) : the household’s capital income +;(t) relative to the average capital

income income across all households ¥(t).

1. Labor income the household’s labor income y;(t) normalized by the average labor

3. Household size h! € [1, A]: the number of individuals living in household i, comprising
the reference person, partner, and children.

4. Household status /] € {0,1,2}: indicates whether the reference person is single (0), in a
relationship with the partner (1), or married to the partner (2).

5. Age h} € [1, B]: the age of the oldest individual in the household (between the reference
person or the partner).

6. Business ownership nf? € {0,1,2}: indicates whether the household does not own a

business (0), owns an unincorporated business (1), or owns an incorporated business (2).
7. Health status h € [0,1]: the proportion over the past four years in which at least one of
the core household members was unable to work due to poor health.
hy
W/
hold, normalized by the sample median at time ¢.

8. Cars per adult with 1§ € [1,C]: the number of cars per adult owned by the house-

Different outlier correction procedures are applied to these input variables. For cars per adult,
data is missing for years 1973-1974 and 1987-1997. To address this, I apply to this variable
the distance-weighted interpolation procedure outlined in the Online Supplement. The PSID-
questionnaire codes for the input variables are provided in the Online Supplement as well.

In addition to variables (1)-(8), the inputs for the homeowner ML models (xp) include normal-
ized gross main housing values h;(t)/h(t) and the mortgage ratio m;(t)/h;(t). For the renter
models, the inputs (x;) also include normalized rental payments r;(t) /7(t). These additional
variables allow for scale dependence between the scaling factors ( fuand f,) and the value of the
household’s residence. For instance, as households accumulate more wealth, they may tran-
sition to more valuable houses, but the value of the house or corresponding rental payments
might constitute a declining proportion of their total wealth over time.

Estimation & cross-validation The homeowner and renter GB-model is estimated over sam-
ple T¢. Observations over Ty are divided into a randomly generated training set and testing
set. I use a mean squared error (MSE) loss function, which is the benchmark in the literature.
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The predictions for the scaling factors over full sample 7, of the GB-model are given by:

on M o M

B = f(x) = 17+ Y Arg™ (xn) (10)
m=1

7GB M*

Fo=fr () = +ZArg, (11)

where a detailed derivation is provided in the Online Supplement. f(©) denotes the initial
guesses and ¢ is the weak learner at iteration 2. The hyperparameters include the optimal
number of boosting rounds M*, the optimal learning rate A*, and the optimal maximum depth
of a tree d*. Predictions for @$}(t; Mgg) are obtained by substituting f and fSB into Equation
8.

To optimize the hyperparameters, a k-fold cross-validation is performed separately for the
homeowner and renter GB-model. Using the MSE loss function Lcvy, the average cross-validation
losses are defined as:

Loy(My, dy, Ay) = L9 (M, dy, Ap) (12)

-
Il
—_

= =
‘M"‘

—_

-

ECV(M;/, dr, )\ ) E(]) (MT’/ dr, /\7’) (13)

k!

where I set k = 10, consistent with standard practices. The optimal hyperparameters are
obtained by minimizing the cross-validation loss:

(M;,,dy;, Ay) = argmin Loy (Mg, dj, Ay) (14)
(M;,d;, Ay) = argmin Loy (M, dr, Ay) (15)

For the homeowner GB-model, the resulting optimal hyperparameters equal M* = 140, d* =9
and A* = 0.045. Those for the renter GB-model are given by M* = 90, d* = 6 and A* = 0.06. In
the Online Supplement, I compute summary metrics of the SHAP-values for the homeowner
and renter GB-model across all observations.

C.4 Housing measures

I aim to evaluate whether the predictions of the GB and MLP models outperform proxies that
neither rely on an optimization procedure nor utilize all available information in the sample
(), as is typically the case in the existing literature (e.g. Chetty et al., 2020; Pfeffer & Killewald,
2018). In the following, I define four such proxies, referred to as housing proxies.

65



A first housing proxy, denoted as @{}(t; Mnp1), is defined by Equation 9. It assumes that
homeowners” wealth equals C-times their main housing value, while renters” wealth is zero.
Since we are ultimately interested in wealth rankings, the value of C is irrelevant as long as
C > 0. The second housing proxy @¢*(t; Mnp;), third housing proxy @} (t; Mnp3) and fourth
housing proxy @$}(t; Mnps) attempt to refine the estimation of renters’ wealth.

The second housing proxy is defined as:

CHO(t) if hi(t) >0
D5 Mup) = (L l 16
(8 M) et it ny(r) =0 (16

where C is again a fixed number, and v(t) the rental yield, which is taken from Jorda et al.
(2019). This proxy (1) assumes that rental yields are uniform across houses, (2) approximates
the value of renters’ residence as the inverse of the rental yield, and (3) assumes that renters’
wealth corresponds to the value of the house they occupy. However, given that the median
wealth of renters equals zero, the latter assumption seems particularly strong. To address this,
a third housing proxy is introduced:

C_hhlﬂ(t) if hi(t) >0

= i .
Gl ifh(t) =0

17)

WS (t; Mnps) = {

where Cj, is the average scaling factor to gross main housing value for homeowners, and C, is
the average scaling factor for renters” estimated housing values. Both are calculated over the
sample Ty. That is:

. 1 & wl(t) .

Ch = E; 30 if h;(t) >0 (18)
. 1 & wl(h , B

C = Ei; 0 u(t) if he(t) =0 (19)

Finally, to mitigate the influence of outliers in scaling factors, a fourth housing proxy is defined
as:

Chhzﬂ(ﬂ if hi(t) >0

o (t; M =19 =
(8 Mues) 2O i () = 0

(20)
G

where C;, and C, are defined analogously to Equations 18 and 19, but calculate the medians
instead of the averages.
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C.5 Performance comparison

Given the wealth predictions from the optimal ML models and the four housing proxies, the
approximated wealth rank series can be determined. These ranks represent the ultimate objects
of interest and are defined as:

100 x (1 + YN (@R x) < w?(tx)))
Nt

£t x) = (21)

where x = { Mgp, Mmrp, Mnpr1, Mnp2, Mnps, Mnps |-

To evaluate the performance of the two ML models and the four housing measures, I compare
the proxy wealth ranks (k) to the actual ones (k) over the testing set. Performance metrics
include the mean squared error (MSE), mean absolute error (MAE), and the proportion of
wealth rank predictions that deviate by more than 25 and 50 ranks to actual ones. These metrics
are summarized using two approaches. In a first approach, the performance metric M is
calculated for each year and averaged across years:

1N[ 1T

M = ﬁt ;m(ﬂi,t, Pi,t), M = T g/\/lt (22)

In a second approach, the performance metric M is computed for each household and aver-
aged across all households:

—_

1 I
M; = T Y m(aig, piy), M= T 2/\41 (23)

teV; i=1

where V; denotes the set of valid time points for individual i. m(a, p) represents the specific
calculation for the chosen metric, such as (a — p)? for MSE or |a — p| for MAE.

The performance results are displayed in Table 3. Two key findings persist. First, across the
housing proxies, the third housing proxy consistently displays superior performance. Second,
the housing proxies” performance does not come close to those of the ML-models. Moreover,
between the ML-models, it is the GB-model that outperforms the MLP-model. Therefore, in
the following sections, I use the GB-model predictions as a proxy for wealth and wealth ranks
over the sample 7q. To simplify notation, I define:

Wi(t) = @ (5 Mas), &i(t) = &2 (t; Mgp) (24)

Despite the superior performance of the GB model, a significant number of predictions re-
mains inaccurate (Table 3). On average, 9% of wealth rank predictions deviate by more than
25 ranks from their actual values in any given year, while approximately 1% of the predictions
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diverge by more than 50 ranks. Additionally, 21% of households in the sample experience a
wealth rank misallocation of at least 25 ranks at some point during their lifecycle. When the
misallocation threshold is raised to 50 ranks, this proportion drops to 3%.

Table 3: Model performance for housing and machine learning wealth proxies.

Across years Across households

Proxy MSE MAE >25 >50 Proxy MSE MAE >25 >50
NP1 453.88 1558 0.20 0.04 NP1 438.17 15.10 0.37 0.09
NP2 90932 2357 041 0.10 NP2 92515 2358 061 021
NP3  429.09 1542 0.19 0.03 NP3  410.61 1487 036 0.08
NP4 52838 1753 026 0.04 NP4 51056 17.00 0.44 0.09
MLP 23851 11.02 0.10 0.01 MLP 23576 10.68 0.23 0.03
GB 195.67 10.00 0.08 0.01 GB 196.15 9.80 0.19 0.02

Note: panel (a) computes the performance metrics per year and averages across time. For example, in the average
year, 8% of households have their wealth ranks misallocated by at least 25 units based on the GB-proxy. Instead, in
panel (b), the performance metrics are calculated per household and are averaged across households. For example,
19% of households have their wealth rank misallocated by at least 25 wealth rank units at some point in this
household’s existence based on the GB-proxy.

Figure 17 highlights the timing of misallocations and its distribution over actual wealth. Three
key observations emerge. First, the GB-proxy series outperforms the housing proxy series in
all time periods and across all actual wealth levels. Second, for both the GB- and housing
proxy, misallocations are more common among poor households (those belonging to the bot-
tom 20%). This makes sense: wealth levels near the bottom of the distribution are closer to
zero, so that small errors in estimated scaling factors disproportionately affect wealth ranks.
Third, for the poor households, there exists time variation in the likelihood of misallocation:
the degree of misallocation was significantly higher during and in the aftermath of the global
financial crisis of 2008. This effect holds for both the GB-proxy and housing proxy, but is sig-
nificantly stronger for the latter.
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Figure 17: Proportion of misallocated households per wealth bin (according to actual
wealth) for the GB-proxy and the third housing proxy.
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Note: this plot reports the fraction of households that is misallocated by at least 25 wealth rank units (upper panel)
or 50 wealth rank units (lower panel) for each year. The left panels report the outcomes for the GB-proxy series
(GB), while the right panel does so for the third housing proxy (NP3). Households are allocated to wealth bins
according to their actual wealth levels.
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D Empirical strategy
D.1 Individual-level

Notation & eligibility Ultimately, our focus is on the mobility of individuals, rather than
households. This requires taking into account that individuals may switch households over
time. For instance, an individual living alone may begin cohabiting with a partner or get
married, causing the original household (e.g. i = 1) to dissolve and a new household with
different characteristics (e.g. i = 2) to be formed. Such transitions might influence the indi-
vidual’s wealth positively or negatively. Let us write variable z of an individual j belonging to
household i at t as z;(t, i), where i may vary over time.

I restrict the analysis to individuals that have at least some control over their finances, and —
consequently — influence the decisions of the household to which they belong. Therefore, I
limit the PSID-sample to individuals identified as either the reference person or the partner
within their household i. I designate an individual as partner if its relationship to the reference
person is classified in the individual-level PSID file as legal spouse, partner, uncooperative
legal spouse, or other non-relatives (which primarily includes same-sex partners).

Wealth levels & rankings A key question regarding individual-household linkages is how
to allocate household-level wealth categories and total wealth w; to the individual level. This
allocation is performed using the household status variable &, which was defined in Section
C.3. I use the following allocation rules:

1. Single individual (hj = 1): when the household consists of a single financially-independent
individual, the entire household-level wealth w(i) is allocated to this individual: w;(i) =
w;.

2. Non-married couple (h§ = 2): when the household comprises a non-married couple, the
household-level wealth level w(i) is allocated in proportion to each individual j’s con-
tribution (averaged over the past three survey waves) to the household’s labor income:
w;(i) = Y w(i).

3. Married couple (1 = 3): when the household consists of a married couple, the household
level wealth level w(i) is divided equally between both individuals: w;(i) = J w(i).

Once w; is defined forjin1,2,..., N; — with N; defined as the number of eligible individuals —
I compute both the individual-level actual wealth ranks «;(t,7) and proxy wealth ranks &;(t, 7).
The individual-level wealth ranks are calculated as in Equation 7, with the household subscript
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i replaced by the individual subscript j:

100 x <1 +2}f£1 1(w(t, i) < wj(t,z'))) ]
t
100 <1 M (1) < z@(t,z‘))) ]
kit i) = N (26)
t

where th represents the number of eligible individuals at time ¢, w is the actual wealth level,
and @ is the estimated wealth level using the GB-model from Appendix C.

D.2 Cohorts & lifecycle stages

Definitions To structure the analysis, each individual j is assigned to a time-invariant birth
cohort a and time-varying lifecycle stage s. A variable z at time t of individual j belonging
to household i, birth cohort a and lifecycle stage s is then defined as z;(t,7,s;a). Here, i and s
vary with t, while a remains time-invariant. birth cohorts Y are defined over ten-year intervals,
beginning with 1866-1975 up until 2006-2015. Lifecycle stages & are based on age brackets and
defined as 0-24, 25-29, 30-34, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74 and 75+, determined
by the individual’s age a;(t).

Within-cohort wealth ranks In the literature, wealth rank outcomes are typically calculated
across the entire population. However, since older individuals tend to have accumulated more
wealth, they naturally occupy higher positions in the overall wealth distribution. To address
this, I define individual-level within-cohort wealth ranks, using the previously introduced
birth cohorts. These ranks are calculated for both actual wealth (using observed values) and
proxy wealth (using GB-model estimates). The within-cohort ranks are derived by applying
the ranking formula to the subset of individuals belonging to a specific birth cohort a:

. 100 x (1 + Z,I:Zl (wi(t,i,s;a) < w(t, i,s;a))) |
Kj(t, i,s;a) = N (27)
- 100 % (1+ 57, 1@t i,si0) < @y(ti,50)) ) |
Ri(ti,s;a) = N (28)
f

where N/ is the number of eligible individuals in cohort a at time f, w denotes the actual
wealth level, and @ represents the wealth level predicted by the GB-model. These within-

71



cohort wealth ranks serve as the primary input of the wealth mobility analyses conducted in
this paper.

Summary across stages Finally, I summarize each variable for an individual j over their
lifecycle stages. For a given variable z of individual i during lifecycle stage s, the summarized
value, denoted as zj(s;a), is defined as the median of all observations of z for individual j
across the years t within the lifecycle stage s:

zj(s;a) = Zi(t,i,s;a) VteT; (29)

where Zj(i, s; a) represents the median value of z for individual 7, belonging to birth cohort 4,
during the lifecycle stage s. The set 7; includes all years t that correspond to the lifecycle stage
s for individual j. This approach allows us to drop the time indicator t. The key objects «;(s; a)
and &;(s; a) are then defined as the median actual and proxy wealth ranks of individual j over
their lifecycle stage s, with s € E.

This summary over multiple observations per lifecycle stage offers four key advantages. First,
any remaining transitory measurement errors — even after the application of outlier correction
procedures — are likely to be smoothed out. Second, the formulation reduces the impact of
occasional non-response, helping to preserve sample size in wealth mobility analyses. Third,
aggregating data by lifecycle stage helps minimizing noise arising from household transitions,
such as marriage or divorce. These might otherwise distort wealth mobility estimates. Fourth,
it circumvents the non-uniform timing of PSID survey waves, in particular for the reduced
sample Y.

D.3 Proxy wealth & wealth ranks over ¥

In earlier appendices and sections, I have defined actual wealth w;(s;a) = w}f
cohort wealth ranks «;(s;a) = K}Y(S;ﬂ). Additionally, I introduced proxy wealth @;(s;a) =
zbjg(s;a) and proxy within-cohort wealth ranks &;(s;a) = k].Q(s;a). These take values over

reduced sample Ty and full sample 7, respectively.

(s;a) and within-

Let us now define proxy wealth and within-cohort wealth ranks, summarized per lifecycle
stage s, restricted to the reduced sample ¥:

w;f(s;a) = w?(s;u) ' A}F(s;a) = 1%]9(5;11) - (30)

where |7, indicates that the values are restricted to the time frame Ty.
Equation 30 covers the same time-frame and individuals as actual wealth w}y (s;a) and wealth

ranks K}Y(S; a). Therefore, a comparison of the outcomes of Z@}P(S; a) to those of w;f(s;a) pro-

vides insight into the validity of the GB-model predictions and the accurateness of ZD]Q(S ;a)
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and 1%]9(5; a). As argued in Section 3.3, throughout the mobility analyses, the outcomes based

on w;f(s;a) align more closely to those based on szQ(s;a) than those based on w}F(s;a). This

indicates that differences in the results between w}Y (s;a) and Zi)]Q (s; a) relate to the usage of the

proxy (k versus x) rather than sample differences (2 versus ).
For future reference, I define the relevant sets of actual and proxy within-cohort wealth and
wealth ranks as:

]

K= {K}F(S;ﬂ), k]Q(s;a), ;F(s;a)} (32)

W= {w}F(s;a), w8} (s;a), w;Y(s;u)} (31)

D.4 Inter-generational linkages

The PSID enables the construction of family trees, allowing individuals to be linked to their
parents and grandparents. I focus on biological and adoptive parents, excluding step-parenting.
An individual can thus have at most two parents and four grandparents. Parent indices are
denoted as p1(j) and py(j), so that p(j) = {p1(j), p2(j)}. The set of grandparent indices is then
defined as:

g(p(7) = {&1(p1(), $2(p1(j)), &1(p2(j)), $2(p2(j)) } (33)

while a variable z associated with the k-th parent of individual j is expressed as z,,, (;). Similarly,
a variable z of the first grandparent of the k-th parent of individual j is denoted as z¢, (,(j))-

D.5 Intra-generational lifecycle phases

For the intra-generational analyses, individuals” wealth rank trajectories are investigated over
two lifecycle phases: working life (ages 30-54) and older age (55-74). For completeness, I define
the lifecycle stages relevant to working life and older age as W and 04
distinction in two lifecycle phases offers two main advantages. First, not a single individual
has data points spanning the entire lifecycle. By separating the analysis into two phases, it be-
comes possible to examine intra-generational mobility across the entire lifecycle, albeit using
data from different birth cohorts. Second, this approach aligns with both theoretical and em-
pirical literature, which frequently differentiates between models of wealth dynamics during

working life and during older age.

respectively. The
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E Inequality & mobility metrics

In this section, I define the outcome measures used in the inter- and intra-generational wealth
mobility analyses. These include (i) metrics related to wealth inequality and accumulation over
the lifecycle, (ii) rank-rank coefficients, (iii) a squared mobility metric, (iv) transition probabil-
ities, (v) discretionary groups and (vi) hierarchical clustering. For intra-generational analyses,
all six measures are calculated and reported. The inter-generational analyses are restricted to
measures (ii), (iii), (iv) and (v).

Outcome metrics (ii) to (vi) compare two cross-sections of wealth ranks. Specifically, for the
inter-generational analyses, different individuals (parent-child or grandparent-grandchild) of
the same family are compared at the same lifecycle stage (if available) or different lifecycle
stages (otherwise). In the intra-generational analyses, the same individuals are evaluated at an
initial and a final lifecycle stage.

E.1 Wealth dynamics over the lifecycle

For each wealth bin b, I calculate their wealth shares and wealth-to-average labor income ratios

across the lifecycle stages s € EVE or s € EOA:

_ Yiepw

YicpW
Ab(s,'ﬂ) - Zw 7 - ]e
]

0y(s30) = (34)

where |b| denotes the number of individuals in wealth bin b, w € W represents wealth, and
7(t) is the average labor income across all individuals at time ¢t. Depending on the lifecycle
phase under consideration, a < YWLora € YOA, and s € EWL or s € EOA. In addition to
these measures, I compute the proportion of low-wealth and high-wealth individuals for each
lifecycle stage s. These groups are defined as individuals with wealth levels below 7(s;a) and

in excess of twenty times (s; a) respectively:
1 jea jea

0 (s;a) = il Zw < g(s;a), O"(s;a) = Tl Zw > 20-7(s;a) (35)
) ]

where |a| denotes the number of individuals in birth cohort a, and w € W.

E.2 Overall mobility

Rank-rank coefficients I calculate a rank-rank coefficient 8, obtained by regressing wealth
ranks in a final stage (s = f) on wealth ranks in the initial stage (s = i) using Ordinary Least
Squares (OLS). It is defined as:

k(s = f) = a+ Prr(s = 1) + e, (36)
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where « denotes the intercept, B the regression coefficient capturing the degree of wealth per-
sistence, and ¢ the error term for an individual, parent-child pair or grandparent-grandchild
pair k.

Squared mobility To attach higher weight to large wealth rank fluctuations, I define a squared
mobility measure 7 as:

_ Lilm(s=6) — (s =i))?

|a]

1(a) (37)
where |a| denotes the number of individuals in birth cohort a, and i and f denote the initial
and final lifecycle stages under consideration. Across all analyses, the squared mobility metric
yields identical findings to the rank-rank coefficient B. I therefore do not report this squared
mobility metric in the main text.

E.3 Mobility at the bottom and top

Transition matrices Transition matrices summarize the probability of individuals moving
from a wealth bin b; to a wealth bin b from an initial stage s = i to a final stage s = f.

After categorizing individuals into wealth bins b based on x € K, the transition probability
from b; to b¢ is calculated for a given cohort a as:
ny (bi/ bf)
P(bi = bf)(a) = =—F———~ 38

( i f)( ) be na(bi, bf) ( )
where n,(b;, by) represents the number of individuals in cohort a transitioning from bin b; to
bin b¢. The total number of individuals in the initial bin b; is given by }_;, 1, (b;, bg). The ex-ante
and ex-post transition matrices Tga (a) and Tgp(a) for cohort a are then defined as:

Tea(a) = [P(b; — be)(a)ly, . Tep(a) = [P(b; — be)(a)ly, (39)

where each element of Tga (a) and Tgp(a) represents the probability of transitioning between
two wealth bins b for birth cohort a. While the underlying calculations are identical, the in-
terpretation of the columns differs between the two matrices. In the ex-ante matrix Tga(a), a
column represents the probability of moving to wealth bins b given the initial wealth bin b;. In
the ex-post matrix, a column represents the probability of originating from wealth bins b given
the final wealth bin by.

Discretionary groups Using Equation 38, I calculate the relative occurrence of six discre-
tionary groups that focus on wealth mobility at the bottom 20% and top 10% of the wealth
distribution. The groups include the steady poor (SP), past poor (PP), new poor (NP), steady
wealthy (SW), past wealthy (PW) and new wealthy (NW). At the bottom, (i) the steady poor
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include those families or individuals that start and end in the bottom 20%, (ii) the past poor
the families or individuals that display upward wealth mobility to the top 50% originating
from the bottom 20%, and (iii) the new poor start off in the top 50% but experience downward
mobility to the bottom 20%. At the top, (iv) the steady wealthy start and end in the top 10%,
(v) the past wealthy begin in the top 10% but display downward mobility to the bottom 70%,
and (vi) the new wealthy experience upward mobility to the top 10% after starting off in the
bottom 70%.

Hierarchical clusters The transition matrices and discretionary groups have the advantage of
being intuitive and easily interpretable. They also facilitate cross-cohort comparisons. How-
ever, these methods may be considered somewhat ad hoc, as they require defining thresholds
for wealth bins and discretionary groups prior to the analysis. Additionally, only a fraction of
the sample is allocated to one of the six discretionary groups.

To complement these approaches, I employ hierarchical clustering, a method from the machine
learning literature. This technique groups individuals” wealth rank trajectories into clusters,
providing an alternative perspective to the discretionary groups. The four-step procedure used
for this clustering is adapted from Audoly et al. (2024) and is detailed in the Online Supple-
ment. As it requires wealth rank trajectories as input, it is used only for the intra-generational
analyses.

The clustering process ultimately results in a set of k clusters, where each cluster c contains
the wealth rank trajectories of the individuals assigned to it. All individuals in the sample
are allocated to a specific cluster. Each cluster c is summarized by its average wealth rank
trajectories &.(s), with s € EWL or € EOA

specific cluster, we have:

. Denoting |C.| as the number of individuals in a

1
|Cel

e (s)

Y xi(s) (40)

icCe
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F Composition metrics

In Appendix E, I have defined different outcome measures to assess the degree of inter -and
intra-generational wealth mobility. As part of this, I defined six discretionary groups (steady
poor, past poor, new poor, steady wealthy, past wealthy and new wealthy), as well as a set of
hierarchical clusters. In this Appendix, I define a set of variables that can be used to compare
the composition of the individuals within a sample or across different discretionary groups or
hierarchical clusters.

FE1 Laborincome, saving rates & non-mortgage indebtedness

To assess heterogeneity in labor incomes, [ define the within-cohort labor income rank J; (t,s,i;a),
which is computed by applying the ceiling function to labor income y;(t, s, i;a) for an birth co-
hort a:

100 x (1 + Z,I(\Zl 1(yx(t,i,s;a) <y;(t, i,s;a)))

0i(t,i,s;a) = N7

(41)

where N} is the number of individuals in birth cohort a. 5]-(t, s,i;a) is then summarized into
lifecycle stages as d;(s; a) according to the procedure described in Appendix D. In addition, I
calculate the non-mortgage debt-to-income ratio v;(t, s, i;a) — summarized over s as v;(s;a) —
as the ratio of non-mortgage debt to total household income. It is equated to the level of the
household i individual j is linked with. These variables are aggregated over a sample, group
or cluster g by taking the median observation across the relevant individuals.

FE2 Asset ownership & allocation

With respect to asset ownership and allocation, I formalize two types of measures. First, I
define a homeownership dummy variable d;’ (s; a) which equals one whenever individual j be-
longed more often than not to a household i owning at least one house during lifecycle stage
s. Additionally, two dummy variables d?“(s; a) and d?i(s; a) equal one whenever individual j
was linked to a household i that respectively owned an unincorporated or incorporated busi-
ness more often than not throughout lifecycle stage s. These variables are aggregated across
the sample, group or cluster by calculating the fraction of individuals with dummies equal
to one. Second, I define the conditional equity, housing and mortgage portfolio shares at the
individual level as (x]e-(s;a), oc;?(s;a) and oc;?(s;a). These are equated to their household-level
counterparts. They are aggregated across the sample, group or cluster by computing the me-
dian.
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E3 Inter-vivos transfers & inheritances

The PSID contains two variables that could possibly capture inter-vivos transfers and inheri-
tances. For the first variable — available over sample (2 — households are asked how much
they have received in lumpsum payments (comprising inheritances and payouts from insur-
ance) since the previous survey wave. Prior to 1982, this lumpsum-question provides a brack-
eting response only. Summary statistics for this lumpsum variable provide highly non-robust
outcomes, however. For example, the lumpsum variable suggests that the cumulative propor-
tion of individuals having received a payment remains more or less constant over working life,
which strongly contradicts empirical evidence (e.g. Black et al., 2022). For that reason, I do not
proceed with this variable. For the second variable — defined over sample ¥ — households are
asked how much they have received in gifts or inheritances since the previous survey wave.
For T¢[1] = 1984, the gifts or inheritances inferred about are those that have been received
overall prior to 1984. For the 1984-1989 survey waves, the respondent can provide two sepa-
rate inheritances or gifts, while this number was raised to three from 1994 onwards. I apply
bracketing to the responses if necessary and available, link the household-level responses to
individual-level ones based on the procedure described in Appendix D, and define the re-
ceived gifts or inheritances at t as /; (t,s,i;a).

For an individual j, I then compute at each t the cumulative value of the inter-vivos transfers
and inheritances it has received up until that that point in time. This allows to define two
composition metrics. First, I calculate a dummy variable L?(t, s, i;a) which indicates whether
the individual j has received any transfer in its lifetime up until t. It is summarized per life-
cycle stage s to obtain t;l(s; a), and aggregated by calculating the fraction of individuals in the
sample, group or cluster that has received a transfer. Second, I define the individual’s cumula-
tive transfer receipts to its lifetime resources (Black et al., 2022), defined as L (t,s,i;a). Lifetime
resources are computed as the cumulative sum of capitalized labor income. 1(t,s,;a) is then
summarized over lifecycle stage s to obtain ;(s;a). Finally, ii(s;a) is aggregated across the

individuals in the group or cluster by taking the mean.

There are three remaining issues with tj (t,s,1;a). First, given that it depends on the cumula-
tive sum, the accurateness of t;.(a) for a given individual j is strongly affected by the timing of
non-response or the timing of an individual’s entry into the dataset. For example, the 1984-
question infers about inheritances and gifts ever received prior to 1984. If a household displays
non-response specifically for 1984, or enters the dataset only after 1984, L;’(IZ) may strongly un-
derestimate actual transfers received. However, as long as the non-response is random across
the different discretionary groups or clusters, it should not affect the observed relative differ-
ences between these groups or clusters. Second, as noted, gifts and inheritances are allocated
from the household to the individual level according to the rules described in Appendix D.
For gifts and inheritances, which are mostly intertwined with the family of a specific individ-
ual in the household, these allocation rules may be suboptimal. Nevertheless, given the data,
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there is no straightforward option to execute the linkages more appropriately. Third, the gift
and inheritance questions are self-reported, and may thus suffer from a downward bias. This
holds specifically at the top of the inter-generational transfer distribution.

F.4 Health & household composition

Regarding health and household composition, I delineate two measures'®. First, to assess an
individual’s health level, I define a dummy health variable d;?(t, s,i;a), which is summarized
per lifecycle stage s as d;?(s ;a). The dummy variable uses a question in the household PSID-
dataset which categorizes the household’s reference person’s and partner’s health. Whenever
an individual j belongs to a household where at least one of the two core members is stated
to have poor health, variable d}g (t,s,1;a) is set to one. It is aggregated as the fraction of indi-
viduals in a sample, group or cluster that are part of a household with a poor health member.
Second, the individual’s household status variable, s;?(t, s,i;a) and S?(S,‘ a), is equated to the
status variable of the household it belongs to (see Appendix C). It is aggregated across a sam-
ple, group or cluster by computing the fraction of individuals that is co-habiting with a partner
or married (i.e. is non-single).

161 addition, I have considered the number of children in the household and the integration of the household.
The results indicate that these two variables are not clearly associated with wealth rank combinations or trajectories.
I therefore do not report their outcomes in this paper.
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G Composition analysis: intra-generational wealth mobility during
working life

In this Appendix, I present the results of the composition analysis for working life. Specifically,
Section G.1 provides the composition outcomes for the entire working life sample per lifecycle
stage. Instead, Sections G.2 and G.3 compute the outcome metrics for the individuals in each
of the discretionary groups and clusters. The composition metrics reported in these sections
have been defined in Appendix F. Moreover, in the same Appendix, I have discussed how the
individual-level metrics are aggregated across the sample or across the individuals in a specific
group or cluster.

G.1 Composition across the entire sample

Figure 18 presents the composition metrics per birth cohort for all individuals in the working
life sample. Four findings persist. First, non-mortgage debt participation and non-mortgage
debt-to-income ratios are relatively stable over working life. Overall, non-mortgage indebted-
ness has increased over time: more recent cohorts have higher participation rates and higher
non-mortgage debt-to-income ratios. Second, homeownership rises over the working lifecy-
cle, while the conditional share of housing in individuals” portfolios follows a downward tra-
jectory. Homeownership is lower in the most recent (1966-75) cohort, while the conditional
housing share was higher in the oldest (1936-45) cohort. Mortgage participation displays an
inverse U-shaped pattern (peaking at ages 40-44), while conditional mortgage-to-total assets
ratios decline over the working lifecycle. Moreover, equity market participation and the con-
ditional equity portfolio share rise with age, and were significantly lower for the 1936-45 co-
hort compared to more recent cohorts. Instead, business ownership rates are roughly stable
over the working lifecycle and across cohorts. Third, individuals are more likely to belong
to a poor health household and more likely to be part of a single household as the working
lifecycle progresses. The fraction of single individuals is higher in the most recent (1966-75)
cohort. Fourth, the fraction of inter-generational transfer recipients and the size of their cu-
mulative receipts increases strongly over working life. Figure 18 suggests that the fraction of
inter-generational transfer recipients lays significantly lower for the 1936-45 cohort. However,
this is likely related to a measurement error: the 1936-45 birth cohort is likely to have received
significant transfers prior to 1984, which may not be accurately captured in the PSID-data (see
Appendix F for a detailed explanation).
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Figure 18: Socio-economic characteristics and inter-generational transfers of individuals in
the working life sample.
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Note: this figure summarizes the key composition metrics across all individuals in the working life sample per
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lifecycle stage. The composition metrics and their aggregation method are defined in Appendix F.
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G.2 Composition discretionary groups

Figure 19: Composition metrics for the individuals per discretionary group across the work-
ing lifecycle stages.
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Note: this figure summarizes the key composition metrics across all individuals in each of the discretionary groups
per lifecycle stage. The composition metrics and their aggregation method are defined in Appendix F.
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G.3 Composition hierarchical clusters

Figure 20: Composition metrics for the individuals per hierarchical cluster across the work-
ing lifecycle stages.

Labor income ranks Non-mortgage debt-to-income
100 u.3U
90
80 0.25
70 5 020 3
60 ‘ ‘ 2 2
50 i i 5 0.15 5
40 6 e
30 0.10
20 0.05
10
0 S 0.00-"Sg™SST ST ssB MD SR
Main homeownership Housing ownership

;
I
r Ss D SR

B M

T SS D SR T S
Conditional housing allocation Mortgage participation
T S

0.00-"sg" S5 r SSB MD SR

[ —
~No b~ w

No oA~ Ww

o 1
~No g~ w




Mortgage-to-assets ratio

1.00
0.90
0.80

SB SST ST SSB

Incorporated business ownership

0.40

0.30

0.20

0.10

0.00—=§g="sST ~ ST SSB MD

Equity participation rate

SR

0.40

0.30

0.20

0.10

0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

No oA~ Ww

1.00
0.90
0.80
0.70
3 060
5 0.50
® 040
0.30
0.20
0.10
0.00

87

Unincorporated business ownership

SB SST ST SSB MD SR

Conditional business allocation

3
4
5
6
7
SB SST ST SSB MD SR
Conditional equity allocation
|3
4
HS
6
07

SB SST ST SSB MD SR



Health Household status

U.3V 1.0U
0.90 =
0.25 080l . R = 5 R
0.20 0.70 3
0.60 i
0.15 0.50 H5
6
0.40 7
0.10 0.30
0.05 0.20
A i 0.10
0.00-"sg™SST ST SsB MD SR 0.00-"sg 'SST ST SSB MD SR
Fraction of recipients Cumulative receipts to lifetime resources
0.8V 20
0.70
0.60 16
0.50 3 3
4 4
0.40 5 5
6 6
0.30 7 7
0.20
0.10
0.00-"Sg™SST ST sSsB MD SR SB SST ST SSB MD SR

Note: this figure summarizes the key composition metrics across all individuals in each of the discretionary clusters
per lifecycle stage. The composition metrics and their aggregation method are defined in Appendix F.
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H Additional visualizations

In this Appendix, I report additional visualizations related to inter- and intra-generational
wealth mobility outcomes. The structure of the appendix follows the chronology of the main
text: I first provide additional visualizations for three- and two-generational wealth mobility,
and then move to intra-generational wealth mobility outcomes.
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Table 4: Share of families (in %) consolidating in the bottom 20% over two generations,
computed across children’s birth cohorts € YFC for parents and children at identical lifecy-
cle stages.

Variable ‘ Stage ‘ 1946-55 1956-65 1966-75 1976-85 1986-95 | Pooled

30-34 - 7.2 7.6 6.8 6.6 7.0
(5.8,8.9) (6.4,8.8) (6.0,7.6) (54,79) | (6.6,7.5)

35-39 - 6.1 7.2 7.8 - 7.3
%0 (52,7.3) (6.0,8.2) (7.1,88) (6.8,7.9)

40-44 10.9 7.2 7.7 8.6 - 8.2
95,123)  (6.0,85) (6.8, 8.5) (7.2,9.8) (7.7,8.9)

45-49 9.0 8.3 6.7 - - 8.0
(76,105)  (7.2,9.3) (5.7,7.7) (7.2,8.6)

50-54 7.4 7.9 - - - 7.8
(6.0,8.7) (6.8,9.0) (7.3,85)

55-59 9.2 8.9 - - - 9.0
(8.0,10.8)  (7.5,10.3) (8.1,9.8)

Note: the share of families belonging to each discretionary group are calculated based on parents” and children’s
within-cohort wealth ranks at identical lifecycle stages (ranging from 30-34 to 55-59) using the proxy wealth mea-
sure . The 95% confidence intervals are reported in parentheses. Estimates are included only for cohort-stage
combinations with at least 750 observations.
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Table 5: Share of families (in %) consolidating in the top 10% over two generations, com-
puted across children’s birth cohorts € YFC for parents and children at identical lifecycle
stages.

Variable ‘ Stage ‘ 1946-55 1956-65 1966-75 1976-85 1986-95 | Pooled

30-34 - 2.2 3.1 2.5 3.3 2.7
(1.3,3.3) (2.4,3.8) (2.0,3.0) (23,45 | (24,31)

20 35-39 - 3.1 3.6 4.0 - 3.6
(2.4,3.9) (2.9, 4.4) (3.5, 4.5) (3.2,4.0)

40-44 2.1 29 3.8 3.0 - 3.1
(1.2,3.0) (2.2,3.5) (3.1,4.5) (2.0,3.9) (2.6,3.5)

45-49 2.2 3.3 3.8 - - 3.2
(1.5,3.0) (2.5,3.8) (2.9,47) (2.8,37)

50-54 1.9 2.6 - - - 2.7
1.2,27) (2.0,3.2) (2.2,3.1)

55-59 3.1 2.4 - - - 2.7
(2.0,4.2) (1.7, 3.0) 2.1,3.3)

Note: the share of families belonging to each discretionary group are calculated based on parents” and children’s
within-cohort wealth ranks at identical lifecycle stages (ranging from 30-34 to 55-59) using the proxy wealth mea-
sure . The 95% confidence intervals are reported in parentheses. Estimates are included only for cohort-stage
combinations with at least 750 observations.
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Figure 21: Transition probabilities for grandparents and grandchildren (solid lines) and
parents and children (dotted lines) when (grand)children are aged 35-39.
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Note: these plots produce transition probabilities across specific wealth bins. These are defined in line with the
discretionary groups (see Section 3.4 and Appendix E). In the notation above, «,), denotes the within-cohort
wealth ranks of (grand)parents, and « o). the within-cohort wealth ranks of (grand)children. The transition prob-
abilities are computed at different lifecycle stage combinations: child wealth ranks at ages 35-39 are compared to
(grand)parental wealth ranks at stages between 45-49 anid"70-74 (plotted on the x-axis). As an example, the values
produced for the right-hand plot on the top row denote the probability of children belonging to the top 50% at
stage 35-39 given that their parents belonged to the bottom 20% at any of the x-axis stages. The pooled dataset is
used. The shaded areas display the 95% confidence intervals, which have been determined through bootstrapping.



Figure 22: Proportion of high-and low-wealth individuals for birth cohorts € Y and €
YO4 based on actual wealth levels w¥.
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Note: these plots show the fraction of high- and low-wealth individuals at each lifecycle stage per birth cohort.
These fractions are computed based on actual wealth levels w¥. Given that the working life and older age sam-
ples contain different individuals, the proportions of high-and low-wealth individuals are not directly comparable
across the upper and lower panels.
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Figure 23: Rolling window analysis for the discretionary groups.
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Note: this plot shows the probability of shifting from one wealth bin to another. The combination of bins considered
relates to the definitions of the discretionary groups (see Section 3.4 and Appendix E). For instance, the past wealthy
plot displays the probability of an individual moving from the top 10% to the bottom 70% between two lifecycle
stages k — 1 and k. The results are reported for the actual wealth w? and proxy wealth % series. The shaded areas
display the 95% confidence intervals, which have been determined through bootstrapping.
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Chapter 2

Saving Rate Heterogeneity across the Wealth (Rank) Distribution in
the United States !

This paper leverages household-level data from the Panel Study of Income Dynamics (PSID)
to investigate saving rate heterogeneity across the wealth distribution in the United States. 1
estimate saving rates across wealth deciles using two complementary approaches: the cross-
sectional method and the aggregate method. Four empirical facts emerge. First, saving rates
out of labor income and new resources rise with wealth ranks (flow-based saving rates), whereas
saving rates out of wealth and composite resources are roughly stable or only modestly in-
creasing (stock-based saving rates). Second, wealth (rank) mobility contributes substantially
to saving rate heterogeneity. However, the direction of its effect differs between cross-sectional
and aggregate methods due to their distinct treatment of wealth (rank) mobility. Third, the
synthetic method (commonly used in the absence of panel data) overestimates saving rates be-
low the 80th percentile, and underestimates them for the top 20%. Fourth, saving increasingly
consists of saving out of capital gains as households are richer: wealthier households save for
the most part by holding appreciating assets. The paper provides several empirical moments
that are of interest to the heterogeneous agent macro literature.

!Ghent University (email: christophe.vanlangenhove@ugent.be). T acknowledge the financial support from the
Research Foundation Flanders (FWO, project number: 1115324N). I would like to thank Arthur Apostel, Paula
Gobbi, Freddy Heylen, Yasin Kiirsat Onder, Gert Peersman, Alberto Russo and Dirk Van de gaer for their valuable
feedback on this paper.
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1 Introduction

Saving rate heterogeneity is one of the fundamental drivers of wealth inequality (e.g. De Nardi
et al., 2017; Hubmer et al., 2021; Van Langenhove, 2025b). Nonetheless, empirical evidence
on saving behavior across the wealth (rank) distribution is limited to studies from Norway
(Fagereng et al., 2021) and Sweden (Bach et al., 2018). For the United States, the only available
evidence comes from Saez & Zucman (2016) and Bauluz & Meyer (2024). However, the saving
rate estimates across the wealth distribution in these studies rely on the synthetic method,
which only partially incorporates wealth mobility. Therefore, this synthetic method is biased.
As a result, heterogeneous agent models of the U.S. wealth distribution have resorted to using
Nordic data (e.g. Fernandez-Villaverde & Levintal, 2024) or empirical data across the income
(rank) distribution (e.g. Hubmer et al., 2021) as saving behavior calibration targets.

In this paper, I fill this research gap by providing empirical evidence on saving rate hetero-
geneity across the wealth (rank) distribution in the United States based on household-level
data from the Panel Study of Income Dynamics (PSID). I provide an answer to four research
questions. First, what is the relationship between total saving rates and the wealth (rank) dis-
tribution in the United States? Second, what is the contribution of wealth (rank) mobility to the
observed total saving rate patterns across the wealth (rank) distribution? Third, how signifi-
cant is the bias of the synthetic method compared to unbiased estimation methods? Fourth,
does the composition of total saving into active saving and passive saving vary across the
wealth (rank) distribution? To address these four research questions, the present paper pro-
ceeds in two stages.

In a first stage, I introduce various saving concepts and saving rates, and outline two strategies
to estimate saving rates across the wealth (rank) distribution. On the one hand, the saving con-
cepts distinguish between total saving (the change in wealth), active saving (disposable income
minus consumption expenditures) and passive saving (capital gains and inter-generational
transfers). I define the saving rates out of labor income and new resources (flow-based saving
rates) and the saving rates out of wealth and composite resources (stock-based saving rates).
On the other hand, I show that the saving rate of a wealth bracket can be estimated using
the cross-sectional method (which computes a summary metric over the cross-section of sav-
ing rates) and the aggregate method (which estimates saving rates using aggregated variables
over households sets). In addition, I propose approaches to quantify the impact of wealth
(rank) mobility on observed saving rates patterns across the wealth distribution. I also out-
line the synthetic estimation method that is used in the literature on U.S. saving behavior and
propose an approach to quantify its bias.

In a second stage, I conduct empirical analyses that address the four research questions of this
paper. First, I find that total saving rates out of labor income and new resources rise with
wealth ranks (flow-based saving rates). In contrast, total saving rates out of wealth and com-
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posite resources are roughly stable and only moderately increasing with wealth ranks (stock-
based saving rates). Second, wealth (rank) mobility has a significant impact on total saving
rate patterns across the wealth distribution. However, while the contribution of wealth mobil-
ity is strictly positive for the cross-sectional method, it is negative across most of the wealth
distribution for the aggregate method. I show that this discrepancy relates predominantly to
these methods’ distinct treatment of wealth (rank) mobility: while the cross-sectional method
attaches equal weight to all households in a wealth decile, the aggregate method overweighs
households that display downward wealth mobility. Third, I find that the synthetic method
overestimates saving rates up to the 80th percentile, while it underestimates the saving rates of
the top 20%. Fourth, I demonstrate that households’ reliance on capital gains rises across the
wealth rank distribution: the top wealthiest households’ total saving consists for the most part
of saving by holding appreciating assets. Passive saving out of inter-generational transfers is
more prevalent for wealthier households, but relatively unimportant in magnitude.

Related literature & contributions This paper makes contributions to three strands of the
literature.

First, I contribute to the empirical literature studying saving rate heterogeneity across the
wealth (rank) distribution. For the Nordic countries, using panel datasets, Bach et al. (2018)
provide empirical evidence for Sweden, while Fagereng et al. (2021) do so for Norway. In
addition, Saez & Zucman (2016) investigate saving behavior across the wealth distribution for
the United States using cross-sectional data without a panel dimension. Because of this data
restriction, their estimation relies on the synthetic method, which is biased. The present paper
is therefore the first to provide unbiased empirical evidence on the relationship between sav-
ing rates and wealth (ranks) for the United States?. It is also the first to study the importance
of active saving versus passive saving across the U.S. wealth (rank) distribution.

Second, I quantify the contribution of wealth (rank) mobility to the observed saving rate het-
erogeneity across the wealth (rank) distribution. I also show that estimation differences be-
tween the cross-sectional and aggregate method relate almost entirely to their distinct treat-
ment of wealth (rank) mobility. This paper is one of the first to explicitly study the contri-
bution of wealth mobility to saving rate patterns across the entire wealth distribution. One
exception is Gomez (2023), which uses an accounting decomposition to analyze the impact of
wealth (rank) mobility for Forbes 400 households. However, Gomez (2023) does not analyze
the entire wealth distribution, and uses a narrower saving rate definition than is the case in the
present paper.

Third, when panel data is absent, some studies have resorted to the synthetic method to es-
timate saving rate heterogeneity across the wealth (rank) distribution (e.g. Saez & Zucman,
2016; Bauluz & Meyer, 2024). However, the synthetic method is biased as it compares different

2There does exist a literature that quantifies saving behavior across the income (rank) or lifetime income (rank)
distribution (e.g. Dynan et al., 2004).
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sets of households over consecutive time periods. This paper is the first to quantify the bias
faced by the synthetic method compared to an unbiased aggregate estimation method.

Roadmap This paper proceeds as follows. Section 2 defines a budget constraint, saving con-
cepts, and two flow-based and two stock-based saving rates. Section 3 elaborates on the cross-
sectional and aggregate methods, proposes approaches to quantify the contribution of wealth
(rank) mobility, and discusses the synthetic method and its bias. Section 4 outlines the samples
taken from the Panel Study of Income Dynamics (PSID) and the measurement of the different
variables used for this study. Section 5 provides the empirical results on total saving rate pat-
terns across the wealth (rank) distribution, the contribution of wealth (rank) mobility, and the
bias of the synthetic method. Section 6 decomposes total saving into active saving and passive
saving. Section 7 concludes.

2 Theoretical framework

In this Section, I outline the theoretical concepts and definitions used to study saving behavior
across the wealth distribution. I start by presenting a budget constraint. Based on the budget
constraint equation, I then define three saving concepts (total saving, active saving and passive
saving) and four saving rates (saving rate out of labor income, new available resources, wealth
and composite available resources).

2.1 A budget constraint

To outline theoretical saving behavior concepts, it is worthwhile to define a household budget
constraint. Let us consider for a household i the wealth accumulation equation:

Mwilt+1) = i(t) + gi(8) + [1i(6) + 75 (O] wi()) = 5(H) — i) +mi()) +milt) ()

where w denotes wealth, y labor income, g government transfer receipts, ' the return on
wealth from dividends and net interest, r° the return on wealth from realized and unrealized
capital gains, T household tax payments, c consumption expenditures, m net inter-generational
transfer receipts, and 7 a residual category capturing household formation dynamics®. It holds
that E [1;(t)] = 0.

For later reference, the budget constraint can be used to define two forms of household avail-
able resources. On the one hand, a household’s new resources denote a household’s total in-

3In the data, this primarily involves children moving out or into the household. Such composition change
generates an inflow or outflow of wealth that is unrelated to any of the other budget constraint variables. I correct
for this term in the definition of total saving (Equation 4).
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flows net of taxes. Algebraically:
AN(E) = yi()) + [ri(0) +ri(0) | i) + gi (1) = Ti(8) + (1) e

On the other hand, a household’s composite resources add to their new resources its wealth level
at the start of time period t. Specifically:

AS(t) = wi(t) + AN(t) 3)

2.2 Three saving concepts

I define three saving concepts: total saving, active saving and passive saving. Total saving
equals the change in a household’s wealth Aw; over period ¢ corrected for the residual #;:

sT(t) = Aw;(t+1) — (1) (4)

and reflects the portion of new resources AN that the household has not used for consumption
c. This can be seen from Equations 1 and 2.

Total saving s! represents the sum of active saving s/ and passive saving s’ (see Equation 1).
That is:

sl = st + P (5)
~—~ ~—~ ~——
Total Active  Passive

Active saving s equals the remaining household’s resources after using its received labor
income, capital income and government transfers net of taxes (or equivalently, its disposable
income) to finance consumption expenditures. Mathematically:

s (1) = yi(t) + gi(t) + ri(Dwi(t) — () — ci(t) 6)

Passive saving sP equals the sum of (realized and unrealized) capital gains and net inter-
generational transfer receipts. Algebraically:

si (1) = ri(t)w;(t) + mi(t) )

There exists no consensus on the definitions of active and passive saving in the literature. In
particular, Fagereng et al. (2021) interpret capital income r!(t)w;(t) as a component of active
saving. On the contrary, Bach et al. (2018) attribute it to passive saving. The definitions used
in this paper are in line with those from Fagereng et al. (2021).
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2.3 Flow-and stock-based saving rates

To study saving behavior, the existing literature defines different saving rates. I distinguish
between two flow-based saving rates and two stock-based saving rates. The former normalize
household’s saving flows with another flow variable (labor income or new resources), while
the latter normalize the saving flow based on a stock variable (wealth) or a variable derived
from a stock variable (composite resources). In what follows, I outline these four saving rates,
using total saving s” as an illustration. I also define saving ratios.

Flow-based saving rates I distinguish between two flow-based saving rates. First, some
studies consider the saving rate out of labor income (e.g. Fagereng et al., 2021). Using the
budget constraint (Equation 1), this saving rate is defined as:

T Si(b)
Gilt) = vi(t) + gi(t)

where it should be noted that the denominator includes not only labor income, but also re-

(8)

placement income and other government transfers. For simplicity, however, I refer to the sav-
ing rate in Equation 8 as the saving rate out of labor income.

The saving rate out of labor income discriminates between the sources of a household’s new
resources. An example can illustrate this. Suppose households A and B have identical new
resources AN and identical total saving s’: A = AY and s, = sl. However, household A
faces higher labor income (and lower capital income) than household B: y4 > yp. As a result,
despite identical A and s, household A reports a lower total saving rate out of labor income
(€% < ¢1) relative to household B.

Second, as a response to this, one can define the saving rate out of new resources. Alge-
braically:

sT(t)

¢ (0 = 35 p) ©)

1

which is invariant to the composition of a household’s new resources. Specifically, in the pre-
vious illustrative example, households A and B display identical saving rates out of new re-
sources (¢, = ¢}) even though they derive new resources from different sources (mostly labor
income versus mostly capital income). The saving rate out of new resources is conceptually
similar to the saving rate out of total income.

Stock-based saving rates The flow-based saving rates normalize a household’s savings flow
based on the financial flows a household has received from its human capital (labor income),
accumulated wealth (capital income and gains) and other sources (government and family).
However, in addition to its inflows at ¢, a household could draw down its wealth stock to
finance consumption expenditures. Stock-based saving rates take this option into account.
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As a third saving rate, a strand of literature (e.g. Bach et al., 2018) considers the saving rate out
of wealth. For total saving, the saving rate out of wealth is defined as:

ul(t) = -4 (10)
which is equivalent to the growth rate of the household’s wealth (using the time subscript
notation from Equation 1). The saving rate out of wealth abstracts from the income, capital
gains and transfer flows a household may have obtained in period ¢.

Fourth, as a response to this, I define the saving rate out of composite resources. It is set equal
to:
s/ (t)

O = A

(11)

which shows how much a household adds to its wealth relative to the total resources it has
available for consumption (or alternatively, its maximum possible consumption at t*).

Saving ratios The flow-based and stock-based saving rates consider in the numerator a saving
variable (total saving, active saving or passive saving). These saving rates have been defined
using a budget constraint for the change in total wealth Aw (Equation 1). Alternatively, some
heterogeneous agent models work with the saving ratio ¢, which is defined as:

£t = @) (12)

— AC
AF (1)
and has wealth w in the numerator, rather than its first difference. This has as a drawback that a
decomposition into active and passive components is infeasible. For that reason, I do not report
saving ratio outcomes in the main text of this paper. However, Appendix F provides empirical
evidence on saving ratios ¢ across the wealth (rank) distribution for the United States.

3 Estimating saving rates across the wealth distribution

Our aim is to investigate saving rate heterogeneity across the wealth distribution. For practical
purposes, this comes down to studying saving rates across the wealth rank distribution, for
instance across wealth deciles. Such a transition from the wealth distribution to the wealth
decile distribution raises two key questions. First, what method should be used to estimate
the saving rate of a wealth decile from the available data? Second, how does wealth (rank)
mobility affect the saving rate estimates per wealth decile?

4This statement is true only when there exists a borrowing constraint at zero: w > 0. Insofar as the borrow-
ing constraints lies below zero (consumer or other credit), composite resources underestimate households’ total
consumption capabilities.
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In this Section, I introduce some additional definitions, and outline two complementary meth-
ods to estimate saving rates across the wealth rank distribution: the cross-sectional method
and the aggregate method. While the former computes some summary metric over the cross-
section of household-level saving rates per wealth decile, the latter relies on aggregates per
wealth decile. I also propose approaches to quantify the contribution of wealth (rank) mobility
to saving rate estimates. Finally, I compare the cross-sectional and aggregate method to the so-
called synthetic method that has been used to estimate saving rate patterns for the U.S. when
no household-level saving rate or panel data is available (e.g. Saez & Zucman, 2016; Bauluz &
Meyer, 2024).

3.1 Composition of a wealth decile

Let us define as P{ the set of households belonging to wealth decile d at time period t. The
composition of a wealth decile d is likely to change over time: due to household-level hetero-
geneity in the total saving rate out of wealth, there may exist turnover of households across
wealth deciles. If such wealth rank mobility takes place, it holds that P # P? . In addition,
the existence of wealth mobility implies the presence of exiting and entrant households for a
decile d.

On the one hand, let O‘f and D‘t’l denote two sets of households that exit wealth decile d at ¢.
These exiting households respectively already belonged to the sample at t — 1 (O%) and exited
the sample at ¢ because of death or non-response (D?). On the other hand, define as I¢ and
BY two sets of households that entered into the wealth decile at t. These entrant households
respectively already belonged to the sample at t — 1 (I?) and entered the sample at ¢ (BY).

Using the exiting and entrant households definitions, the set of households belonging to wealth
decile d at a time period ¢ can be written algebraically as:

Pé =P\ (Of uD{) U (If UBY) (13)

where P4 |\ (Of U D?) represents the immobile households that stayed in the same wealth
decile d over two consecutive time periods. Let us define these immobile households as:

st =Pi,\ (Of UDY) (14)

so that the set of households in a decile d at any ¢ (P/) can be conveniently re-written as the
union of immobile households and entrant households:

P = S U (If UBY) (15)

which allows to distinguish between two types of wealth mobility. First, some households
may enter a decile d at t because of upward or downward wealth mobility: If # @. I refer to
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such mobility as endogenous wealth (rank) mobility. Second, the composition of decile d might
change because households that previously did not belong to the sample enter the sample in
decile d at t: BY # @. I label such mobility as sample-related wealth (rank) mobility.

3.2 Two estimation methods

There exist two complementary methods to estimate the saving rate of a wealth decile d: a
cross-sectional method and an aggregate method. In what follows, I detail each of the two
estimation methods and propose methods to quantify the impact of wealth (rank) mobility on
the saving rate estimates. I depart from the total saving rate out of wealth (Equation 10) as
an illustrative example. In terms of notation, the saving rate estimate for a wealth decile d is
referenced as i’ .

3.2.1 Cross-sectional method

The cross-sectional method estimates the total saving rate out of wealth by taking a summary
metric over a cross-section of household-level saving rates. Common summary approaches
used in this cross-sectional method include taking the mean (e.g. Bach et al., 2018) or taking
the median (e.g. Fagereng et al., 2021). Using the median, the saving rate out of wealth estimate
is obtained as:

T4 (t) = median {le(t) tie Pt”’} (16)

which calculates the median saving rate across all households in decile d at time period t. As
the set Ptd contains both immobile households and all entrant households, it takes into account
all wealth (rank) mobility (both endogenous and sample-related).

How to quantify the impact of wealth (rank) mobility on saving rate estimates according to the
cross-sectional method? I distinguish between two approaches that relate to the two wealth
mobility concepts outlined in Section 3.1. First, in a broad approach, I take the difference
between the saving rate estimate from Equation 16 and a counterfactual saving rate estimate
computed for the subset of immobile households. Algebraically:

broad: ~ median {le(t) tiE Ptd} — median {‘ulT(t) s Sf} (17)

which quantifies the joint contribution of endogenous and sample-related wealth mobility to
the saving rate estimates across deciles d. However, we are primarily interested in the contri-
bution of endogenous wealth mobility to saving rate patterns. Second, therefore, under the
narrow approach I compute:

narrow:  median {le(t) ci€ PA\ Bf} — median {le(t) s Sf} (18)
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where the left-most term represents the median saving rates of all households in decile d at
t, with the exception of those that entered decile d from out of the sample (BY). As a result,
Equation 18 quantifies the contribution of endogenous wealth (rank) mobility to the estimated
saving rate from decile d.

3.2.2 Aggregate method

The cross-sectional method relies on the cross-section of household-level saving rates in a
wealth decile d. On the contrary, the aggregate method estimates saving rates per decile d
using aggregated variables for that d. In what follows, I denote as wp () the average wealth of
the households in set P at time period #°.

The aggregate method estimates the total saving rate out of wealth for a wealth decile d as
follows:

‘aTrd(t _ wp;;l(t) — wp;;z(t — 1)
wpfi(t — 1)

(19)

which represents the growth rate of the aggregate wealth held by households belonging to
wealth decile d at time period t. This approach entirely incorporates wealth (rank) mobility:
it allows for exiting and entrant households and computes the growth rate over an identical
household set. As the same group of households is traced over two time periods, the aggregate
method requires panel data.

How to quantify the contribution of wealth (rank) mobility to saving rates across deciles d
estimated using the aggregate method? In line with the cross-sectional method, I distinguish
between a broad and narrow approach. First, the broad approach calculates:

wpfi(t) — wptd(t — 1) _ wsf(t) — wsf(t — 1)
wptd(t—l) wsf(t—l)

broad.: (20)

which equals the difference between the saving rate estimation from Equation 19 and the sav-
ing rate computed for households that remained in that decile over two consecutive time pe-
riods (i.e. immobile households). Therefore, Equation 21 quantifies the joint contribution of
endogenous and sample-related wealth mobility. Second, the narrow approach quantifies the
contribution of endogenous wealth mobility only. It therefore calculates:

Wiy i (£) — Wi pa (£ — 1) B Wea(t) —wga(t —1)

narrow:
wpiypa (t—1) wga(t—1)

(21)

5Tn other words, the aggregate wealth of all households in the set divided by the number of households in that
set.
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where the left-most term represents the average wealth growth of all households in decile d at
t, with the exception of those that entered decile d from out of the sample.

3.3 The synthetic method

The cross-sectional method from Equation 16 and aggregate method from Equation 19 re-
quire household-level saving rate or panel data. Often, however, researchers do not have such
datasets available. When this is the case, some studies have resorted to a synthetic form of the
aggregate method (e.g. Saez & Zucman, 2016; Bauluz & Meyer, 2024). This synthetic method
computes the total saving rate out of wealth for a wealth decile d as:

wpf_l(t — 1)

ala(t) = (22)

which represents the growth rate of the aggregate wealth held by households belonging to
wealth decile d. The synthetic method requires only aggregated data per wealth decile. How-
ever, it only partially incorporates wealth (rank) mobility: while it computes aggregate wealth
at t over all households belonging to the decile d, aggregate wealth at t — 1 is calculated across
all households belonging to the same decile at t — 1. Therefore, the method compares a differ-
ent group of households across the two time periods if wealth (rank) mobility has taken place,
i.e. whenever:

Pi # P, (23)

which introduces an estimation bias: Equation 22 is expected to underestimate saving rates at
the top of the wealth distribution, and overestimate them at the bottom and the middle of the
distribution (e.g. Bach et al., 2018). This bias can be quantified as:

wp(f) ~ wps(t = 1) wpy(t) —wpy (t=1)

(24)

which equals the difference between the biased method from Equation 22 relative to the unbi-
ased aggregate method from Equation 19.

4 Data & empirical strategy

In this Section, I describe the dataset and empirical strategy implemented to generate empiri-
cal evidence on saving behavior across the U.S. wealth (rank) distribution. I use two samples
of the Panel Study of Income Dynamics (PSID), a representative panel dataset of U.S. house-
holds. The two samples cover the periods 2001-2021 and 2005-2021 respectively, as explained
in more detail below. Given the panel structure of the PSID-dataset, both the cross-sectional
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and aggregate method can be applied. In addition, it is possible to quantify the contribution of
wealth (rank) mobility to the saving rates estimates, and to quantify the bias of the synthetic
method.

For the computation of total saving rates out of labor income and out of wealth, it suffices to
have a measure of labor income and wealth at the household level. However, more data is
needed when considering saving rates out of new resources and composite resources, or when
distinguishing between active and passive saving. In this case, one needs data on all variables
in the budget constraint in Equation 1. Each of these budget constraint variables can be directly
or indirectly imputed from the PSID.

In what follows, I first briefly outline the key properties of the PSID-dataset and the imputation
of the budget constraint variables. Thereafter, I discuss the properties of the two samples.

4.1 Dataset

The empirical analyses in this paper leverage household-level data from the Panel Study of
Income Dynamics (PSID). Specifically, I use the SRC-subsample, as is common in economic re-
search (e.g. Straub, 2019; Van Langenhove, 2025a). This is a representative sample. However,
it underrepresents the top of the wealth distribution (e.g. Pfeffer et al., 2016; Van Langen-
hove, 2025a). This implies that the PSID cannot be used to investigate saving rate and wealth
inequality at the tail. I therefore use the top 10% to represent the wealthiest households. Van
Langenhove (2025a) finds that the top wealth bias relative to the Survey of Consumer Finances
(SCF) is stable over time.

The PSID contains sufficiently rich micro-level information to impute most of the budget con-
straint variables from the responses to the household-level questionnaire. There are two excep-
tions to this, however. First, consumption ¢ is measured accurately only from 2005 onwards.
Second, tax payments T are not reported and therefore need to be imputed. I do this tax impu-
tation using the NBER TAXSIM program (V35). A detailed explanation on the imputation of
the budget constraint variables using the PSID and the NBER TAXSIM program is provided in
Appendix A.

4.2 Empirical strategy

Saving flows & rates Total, active and passive saving flows for a household i are imputed
based on the PSID as:

5T (t) = Awi(t+1) — 7ii(t) (25)
S = 3i(t) + &it) + R ()i (t) — Ti(t) — &(t) (26)
§; (t) = Fi(t)w;(t) + my(t) (27)
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where the ¥-notation reflects the PSID-generated measure of a variable x. As active saving
relies on the PSID consumption-estimate ¢, it can be computed only over the 2005-2021 period.
On the contrary, total saving and passive saving can be computed in both the 2001-2021 and
2005-2021 periods.

The three saving flows are normalized using labor income, new resources, wealth and compos-
ite resources to obtain four saving rates (as explained in Section 2.3). Imputing labor income
7 and wealth @ is relatively straightforward. However, the computation of new resources AN
and composite resources AC relies on close to the full set of budget constraint variables. For
the calculation of new and composite resources, I distinguish between an inflow-based and
expenditure-based approach.

The inflow-based approach uses the 2001-2021 sample and imputes new and composite re-
sources directly from Equations 2 and 3:

AN(t) = Gi(t) + Gi(t) + P ()@ () + 7 ()i () — Fi(t) + i (£) (28)
AL (t) = wi(t) + AN () (29)

which relies on the imputation of a large number of variables in the PSID. Conversely, the
expenditure-based approach uses the 2005-2021 sample to estimate resources from the bud-
get constraint in Equation 1. It relies on the PSID-measure of consumption expenditures ¢.
Specifically:

AN(t) = Aw;(t+1) + ()

i(t) = 7i(t) (30)
AS(t) = @i(t4+1) + & (t) — 7i(

t) (31)

In the remainder of this paper, I will present the total saving rates out of new resources and
out of composite resources calculated based on the inflow-based approach over the 2001-2021
sample. Appendix G compares the baseline outcomes based on the inflow-based approach
to those using the expenditure-based approach over the 2005-2021 sample. They yield highly
similar results. The sample sizes vary between 30000 and 40000 observations, depending on
the saving rate under consideration® and after applying the two sample restrictions discussed
below.

Treatment of edge cases The PSID-samples contain households that display zero labor in-
come or new resources. Moreover, some households have zero or negative wealth or compos-
ite resources. This generates distorted saving rate estimates. To deal with these edge-cases, I
impose two restrictions for each saving rate. These restrictions apply both to the cross-sectional

®For saving rates out of new resources and composite resources, the sample size is closer to 30000 given that the
calculation of resources relies on several budget constraint variables. This raises the probability of household item
non-response. The same applies to active saving. I have checked that the results of this paper are robust to sample
definitions.
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and aggregate method. First, for flow-based saving rates, whenever the flow in the denomi-
nator (labor income or new resources) equals zero, the corresponding saving rate is set equal
to zero as well. Second, for stock-based saving rates, the denominator (wealth or compos-
ite resources) can become negative if the household is indebted. Whenever this is the case,
the saving rate is set to 0.05 when the saving flow in the numerator is positive, and to -0.05
when it is negative. When the denominator equals zero, the corresponding saving rate is set
to zero also. These edge case restrictions predominantly affect saving rates at the bottom of
the wealth distribution (wealth percentile 35 and below), where saving rates are therefore ill-
defined throughout this paper.

Two sample restrictions Finally, I impose two additional sample restrictions. First, I restrict
the 2001-2021 and 2005-2021 samples to households where the PSID-designated reference per-
son of the household is older than 20. This restriction is in line with for example Bach et al.
(2018), and a large literature on wealth inequality measurement. Second, I trim for each year
the most extreme 0.5 percent saving rate observations at both the bottom and top of its distri-
bution. This is a common practice in the literature using PSID data (e.g. Gaillard & Wangner,
2023; Straub, 2019). It has been verified that the results of this paper are robust to alternative
trimming parameters.

5 Total saving rates across the wealth rank distribution

In this Section, I address three research questions. First, what is the relationship between total
saving rates and wealth (ranks) according to the cross-sectional and aggregate method? Sec-
ond, what is the contribution of wealth (rank) mobility to total saving rate estimates according
to both methods? Third, how large is the bias of the synthetic method compared to the (unbi-
ased) aggregate method in estimating total saving rates across the wealth (rank) distribution?

5.1 Total saving rates across the wealth (rank) distribution

How do total flow-based and stock-based saving rates vary with wealth (ranks)? I present the
empirical evidence for these total saving rates according to the cross-sectional method and the
aggregate method. Results are displayed in Table 1. Three key findings persist.

First, at the extensive margin, the share of households with positive total saving (or equiva-
lently, rising wealth levels) increases across the wealth rank distribution. For the bottom 30%,
merely 25% to 40% of households display positive total saving. This fraction rises to above 50%
from the 40th wealth percentile onwards, and continues to rise at higher wealth percentiles.
The share of positive total savers peaks at a little over 70% for the top 20% wealthiest house-
holds (Table 1). Inversely, this implies that still close to 30% of the top wealthiest households
displays negative total saving rates.
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Table 1: Total saving rates across wealth deciles using the cross-sectional method and aggregate method.

Wealth Bin | 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80  81-90  91-100
Positive Savers (%) |  28% 33% 40% 58% 63% 65% 65% 65% 69% 71%
Saving Rate out of Labor Income
Cross-Sectional -0.13 -0.01 0.00 0.03 0.09 0.13 0.19 0.24 0.44 0.85
(-014,-0.12)  (-0.01,-001)  (0.00,0.00)  (0.02,0.03)  (0.08,0.10)  (0.12,0.14)  (0.17,020) (0.21,0.26)  (0.40,0.47) (0.80,0.93)
Aggregate -0.05 -0.05 -0.04 -0.04 -0.00 0.04 0.06 0.12 0.29 1.28

(-0.05,-0.05)  (-0.05,-0.05) (-0.05,-0.04) (-0.05,-0.03) (-0.02,0.02)  (0.00,0.07)  (0.01,0.11)  (0.05,0.18) (0.20,0.40)  (0.80,1.73)

Saving Rate out of New Resources

Cross-Sectional -0.10 0.00 0.00 0.03 0.09 0.13 0.19 0.21 0.30 0.38
(-0.11,-0.09)  (-0.00,0.00)  (0.00,0.00)  (0.03,0.04)  (0.08,0.10)  (0.12,0.14)  (0.17,020) (0.20,0.23) (0.28,0.32)  (0.36, 0.40)
Aggregate -0.05 -0.05 -0.04 -0.04 -0.01 0.04 0.06 0.11 0.23 0.53

(-0.05,-0.05)  (-0.05,-0.05) (-0.05,-0.03) (-0.05,-0.02) (-0.02,0.01)  (0.00,0.07)  (0.01,0.12) (0.05,0.17) (0.15,0.30) (0.37,0.65)

Saving Rate out of Wealth

Cross-Sectional -0.05 -0.05 0.00 0.05 0.11 0.10 0.09 0.08 0.09 0.10
(-0.05,-0.05)  (-0.05,-0.05)  (0.00,0.00)  (0.05,0.05)  (0.09,0.12)  (0.09,0.12)  (0.09,0.10)  (0.07,0.09) (0.09,0.10) (0.09,0.11)
Aggregate -0.05 -0.05 -0.05 -0.05 0.00 0.04 0.03 0.03 0.06 0.11

(-0.05,-0.05)  (-0.05,-0.05) (-0.05,-0.05) (-0.05,-0.05) (-0.02,0.03) (-0.00,0.07) (-0.00,0.06)  (0.00,0.06) (0.03,0.08)  (0.07,0.15)

Saving Rate out of Composite Resources

Cross-Sectional -0.05 -0.01 0.00 0.03 0.05 0.06 0.06 0.06 0.07 0.08
(-0.05,-0.05)  (-0.02,-0.01)  (0.00,0.00)  (0.02,0.03)  (0.050.06)  (0.06,0.07)  (0.06,0.07)  (0.05,0.06) (0.07,0.08)  (0.08,0.09)
Aggregate -0.05 -0.05 -0.04 -0.03 -0.01 0.01 0.02 0.02 0.04 0.07

(-0.05,-0.05)  (-0.05,-0.05) (-0.05,-0.03) (-0.05,-0.01)  (-0.02,0.01) (-0.01,0.04) (-0.00,0.04)  (0.00,0.04) (0.03,0.06) (0.06,0.10)

Note: this table shows (1) the fraction of positive savers per wealth decile, and (2) total saving rates per wealth decile, computed according to the cross-
sectional method (Equation 16) and the aggregate method (Equation 19). The 95% confidence intervals have been determined using bootstrapping
and are shown in parentheses. The calculations are executed for the flow-based saving rates (out of labor income and new resources) and stock-based
saving rates (out of wealth and composite resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge
cases imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile 31-40 and lower).



Second, at the intensive margin, the two total flow-based saving rates (saving rates out of
labor income and new resources) increase significantly across the wealth rank distribution.
The difference between saving rates at the top and middle of the wealth distribution is the
highest for the saving rate out of labor income (Table 1). This follows from varying shares
of labor income to total income: on average, the wealthier are more reliant on capital income
than households in the middle of the wealth (rank) distribution. On the contrary, for the stock-
based saving rates, the saving rate out of wealth is roughly stable (or slightly declining) from
wealth decile 41-50 to wealth decile 81-90, but rises again for the top 10% wealthiest. The
saving rate out of composite resources is moderately increasing from the middle part of the
wealth distribution onwards (Table 1).

Third, the cross-sectional method and aggregate method yield similar saving rate patterns
across the wealth (rank) distribution: for both methods, saving rates out of labor income and
new resources are strongly increasing with wealth ranks (flow-based saving rates), while sav-
ing rates out of wealth and composite resources are respectively increasing only at the top or
increasing moderately with wealth ranks (stock-based saving rates). However, there does exist
a level difference between both estimation methods: the aggregate method predicts higher sav-
ing rates at the top 10% compared to the cross-sectional method, but lower saving rates over
the remainder of the wealth distribution (Table 1). In Section 5.3, I show that this discrepancy
relates primarily to these methods” distinct treatment of wealth (rank) mobility.

Literature comparison How do the observed total saving rate patterns compare to other
research? I compare these patterns to existing research for the United States and the Nordic
countries.

For the United States, Saez & Zucman (2016) employ the synthetic method (as outlined in
Equation 22) to compute the total saving rate out of income. They find that this saving rate
rises with wealth (ranks), both over their full sample (1917-2012) and over the period that
overlaps with my sample (2001-2012). This finding is in line with my results for the total
saving rate out of new resources (Table 1), which is methodologically closest aligned to the
total saving rate out of income used by Saez & Zucman (2016). However, for the 2001-2012
period, Saez & Zucman (2016) obtain a total saving rate out of income of 7% to 15% for the top
10% to 1% wealthiest, and a saving rate of 35% to 38% for the top 1%. On the contrary, my
aggregate method estimate for the top 10% based on the PSID yields a total saving rate out of
new resources that is significantly higher, at 53%. In Section 5.4, I argue that this divergence
most likely follows from the bias in the synthetic method that is used by Saez & Zucman (2016).

Using Swedish administrative data, Bach et al. (2018) establish that the total saving rate out
of wealth declines with wealth (ranks): their (median) saving rates out of wealth decline from
11.4% at decile 40-50 to 7.4% (and lower) from the 90th percentile onwards based on the cross-
sectional method. On the contrary, based on the same method, I obtain saving rates out of
wealth that are higher and only slightly declining from 11% to 9% from percentile 40 on-
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wards. Moreover, the saving rates out of wealth rise to approximately 10% again for the top
10% wealthiest (Table 1). There could be three reasons for this divergence between U.S. and
Swedish data. First, Bach et al. (2018) compute saving rates at the individual-level, while I do
so at the household-level. Second, I consider a sample over period 2001-2021, while Bach et al.
(2018) covers instead the period 2000-2007. Third, the divergence may reflect actual differences
in saving rate heterogeneity between Sweden and the United States: it is possible that saving
rate inequality in the United States is higher compared to Sweden.

Fagereng et al. (2021) use Norwegian administrative data to study total saving rates out of
labor income and wealth at the household level using the cross-sectional method. On the
one hand, these authors find that the total saving rate out of labor income rises strongly with
wealth (ranks). This is in line with my results for the U.S. (Table 1). However, the functional
form of the relationship between saving rates out of labor income and wealth (ranks) differs
between my study and theirs: I find a convex relationship from the 41st percentile onwards,
while Fagereng et al. (2021) obtain a concave pattern. Moreover, the total saving rate out
of labor income of the top 10% is significantly higher in my analysis (over 80%) compared to
Fagereng et al. (2021) (at most 50%). On the other hand, in line with Bach et al. (2018), Fagereng
et al. (2021) obtain a total saving rate out of wealth that declines strongly with wealth (ranks)
and is lower for the top 50% of the wealth distribution than is the case for the U.S.. While the
difference may relate in part to diverging sample periods (2001-2021 in this paper versus 2005-
2015 in Fagereng et al.), these results suggest greater saving rate inequality in the U.S. than in
Norway.

Has the relationship changed over time? Does there exist time variation in the relationship
between total saving rates and wealth (ranks), and/or time variation in saving rates levels for
any wealth (rank)? I analyze this in Figure 1 for the cross-sectional method and Figure 2 for
the aggregate method. Two findings persist.

First, the relationship between total saving rates and wealth (ranks) is stable over time. More
precisely, total saving rates out of labor income and new resources rise significantly with
wealth ranks (flow-based saving rates). On the contrary, total saving rates out of wealth are
roughly stable (or slightly declining) from the middle of the wealth distribution onwards, be-
fore rising again at the top 10% (stock-based saving rates). Finally, total saving rates out of
composite resources are moderately increasing with wealth ranks (stock-based saving rates).

Second, however, there does exist significant time variation in the level of total saving rates
across the wealth (rank) distribution: the 2019-2021 period was characterized by higher saving
over the entire distribution, while saving for the period 2007-2011 was unusually low. The
higher saving in the 2019-2021 period follows from a combination of higher active saving and
higher passive saving, while the lower saving in the 2007-2011 period relates primarily to very
low passive saving (Figures 5 and 6, Appendix B).
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Figure 1: Cross-sectional method — total flow-based and stock-based saving rates across

wealth deciles over different survey waves.
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Note: this figure plots saving rates per wealth decile, grouped across different PSID survey waves. The saving
rates per decile have been estimated using the cross-sectional method (Equation 16). The waves are pooled as:
{2001,2003,2005}, {2007, 2009, 2011}, {2013,2015,2017} and {2019, 2021}. The black line shows the baseline results
without grouping (from Table 1). The calculations are executed for the two flow-based (total saving rates out of
labor income and new resources) and two stock-based saving rates (total saving rates out of wealth and composite
resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge cases
imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile

31-40 and lower).
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Figure 2: Aggregate method — flow-based and stock-based saving rates across wealth
deciles over different survey waves according to the aggregate method.
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Note: this figure plots saving rates per wealth decile, grouped across different PSID survey waves. The sav-
ing rates per decile have been estimated using the aggregate method (Equation 19). The waves are pooled as:
{2001,2003,2005}, {2007, 2009, 2011}, {2013,2015,2017} and {2019,2021}. The black line shows the baseline re-
sults without grouping (from Table 1). The calculations are executed for the two flow-based (total saving rates out
of labor income and new resources) and two stock-based saving rates (total saving rates out of wealth and compos-
ite resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge cases
imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile
31-40 and lower).
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5.2 Robustness of the saving rate patterns

The patterns of total flow-based and stock-based saving rates across the wealth (rank) distri-
bution according to the cross-sectional method are robust to several checks. These robustness
checks are presented in Appendix B. The same conclusions pertain when applying the robust-
ness checks to the aggregate method.

First, I report the empirical results when summarizing cross-sectional data for a set of house-
holds using the mean instead of the median (Figure 7, Appendix B). This check does not
fundamentally alter the empirical conclusions of this paper, with one exception: the total sav-
ing rate out of wealth is higher when using the mean instead of the median and declines with
wealth (ranks). The other stock-based saving rate — the total saving rate out of composite re-
sources — continues to display a slightly increasing pattern over the wealth distribution, but
also takes on somewhat higher values when using the mean rather than the median.

Second, labor income may affect the relationship between total saving rates and wealth (ranks).
To investigate this, I group households according to their labor income ranks (where labor
income includes government transfer income), and plot the relationship between the sav-
ing rates and wealth ranks for each of these groups (Figure 8, Appendix B). I find that the
main empirical conclusion outlined above is not affected by labor income: for all labor in-
come groups, flow-based saving rates increase with wealth (ranks), while stock-based saving
rates are stable (wealth) or slightly increasing (composite resources). However, the level of
the stock-based saving rates (conditional on a household’s wealth decile) is slightly higher for

household groups with higher labor income”.

Third, age might constitute a key variable affecting the link between total saving rates and
wealth (ranks). Using a similar procedure as for the previous robustness check, I group house-
holds according to the age of their reference person, and plot the relationship between the
saving rates and wealth (ranks) for each of these groups (Figure 9, Appendix B). Two findings
persist. On the one hand, the relationship between total saving rates and wealth (ranks) ap-
pears unaffected by age: flow-based saving rates rise with wealth (ranks), while stock-based
rates are relatively stable or slightly increasing. On the other hand, the level effect of age is
strong: conditional on a household’s position in the wealth distribution, its expected saving
rate is significantly higher at younger ages. This is in line with a literature on the lifecycle
dynamics of wealth accumulation (e.g. Bauluz & Meyer, 2024).

Fourth, total saving rates may be different between households that are business owners (en-
trepreneurs) and households that are not. Figure 10 (Appendix B) generates two findings. On
the one hand, the relationship between saving rates and wealth (ranks) remains consistent
with previous results when conditioning on households that are not entrepreneurs. On the

"This is by definition not the case for flow-based saving rates, as these are normalized entirely (saving rate out
of labor income) or predominantly (saving rate out of new resources) by labor income itself.
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other hand, for the wealth deciles where sufficient data on entrepreneurs is available, the sav-
ing rates of entrepreneurs significantly exceed the saving rates of non-entrepreneurs across the
entire region of the wealth distribution where saving rates are defined.

5.3 Contribution of wealth (rank) mobility

What is the contribution of endogenous wealth (rank) mobility to the total saving rate patterns
observed in Section 5.1 (Table 1)? In what follows, I quantify the contribution of wealth (rank)
mobility using the narrow approaches for the cross-sectional and aggregate method, as out-
lined in Section 3.2. I report the empirical results only for the total saving rate out of wealth (in
Table 2). The outcomes for the other saving rates are shown in Appendix C and yield similar
conclusions. For the sake of briefness, I refer to wealth rank mobility as wealth mobility in
what follows.

For the cross-sectional method, the contribution of wealth mobility to total saving rates out
of wealth is positive along the entire wealth distribution (in the region where saving rates are
defined): wealth mobility accounts for roughly 40% to 60% of the total saving rate out of wealth
estimates according to the cross-sectional method. On the contrary, for the aggregate method,
the contribution of wealth mobility is negative in the middle part of the wealth distribution
(from wealth decile 41-50 to wealth decile 71-80), and positive only for the top 10% wealthiest.
Also here the contribution of wealth mobility is substantial: in the absence of wealth mobility,
total saving rates out of wealth according to the aggregate method would double in the middle
of the wealth distribution. At the top, wealth mobility accounts for close to 40% of the saving
rate estimates.

What explains the discrepancy between the wealth mobility contribution outcomes for the
cross-sectional and aggregate method? To understand this, recall that the group of entrant
households I{ for any wealth decile between decile 11-20 to decile 81-90 consists of two groups:
(i) households displaying upward mobility from lower wealth deciles ("upward mobility en-
trants’), and (ii) households experiencing downward mobility from higher wealth deciles ("down-
ward mobility entrants”). In expectation, upward mobility entrants display relatively high
saving rates compared to immobile households and downward mobility entrants, whereas
downward mobility entrants experience relatively low saving rates. Moreover, as downward
mobility entrants originate from higher wealth deciles, their initial wealth levels are higher
than those of immobile households S¢ and upward mobility entrants.

How does this allow to explain the discrepancy in wealth mobility contribution outcomes? On
the one hand, the cross-sectional method takes the median of the cross-sectional distribution of
saving rates of households in P{. Every household — regardless of whether it is immobile, an
upward mobility entrant or a downward mobility entrant — implicitly receives equal weight.
In contrast, the aggregate method estimates saving rates using aggregated variables, and im-
plicitly attaches more weight to households with higher initial wealth. Downward mobility
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Table 2: Contribution of wealth (rank) mobility to total saving rate out of wealth according
to the narrow approach.

Wealth Bin Cross-Sectional Method Aggregate Method
Baseline Counterfactual ‘ Contribution || Baseline Counterfactual ‘ Contribution
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
31-40 - - - - - - - -
41-50 0.11 0.07 0.04 40% 0.00 0.08 -0.08 -1229%
51-60 0.10 0.05 0.06  58% 0.03 0.06 -0.03 -71%
61-70 0.09 0.05 0.05 48% 0.03 0.06 -0.03 -108%
71-80 0.08 0.05 0.03  39% 0.03 0.06 -0.03  -73%
81-90 0.09 0.05 0.04 44% 0.06 0.06 -0.00 -0%
91-100 0.10 0.05 0.05 47% 0.11 0.06 0.04 40%

Note: this table reports the total saving rate out of wealth, estimated using the cross-sectional method (left panel)
and the aggregate method (right panel). For both methods, I apply the narrow approach to quantify the contri-
bution of endogenous wealth (rank) mobility, as defined in Equation 18 for the cross-sectional method and Equa-
tion 21 for the aggregate method. The ’baseline’ column shows the observed saving rate; the ’counterfactual’
column shows the rate under a hypothetical scenario without wealth mobility. The "contribution” columns report
(1) the level difference between the baseline and counterfactual, and (2) the percentage deviation from the baseline.
These indicate the magnitude and direction of the mobility effect. The analysis is based on the 2001-2021 sample.
Edge cases are dealt with as specified in Section 4.2. From decile 1-10 to decile 31-40, saving rates are generally
ill-defined. Therefore, the values of the narrow approach are not reported.

entrants are thus given more weight in the estimation compared to immobile households and
upward mobility entrants. As downward mobility entrants have lower saving rates in expec-
tation, the contribution of wealth mobility to saving rate estimates in the aggregate method is
strongly negative, with the exception of the top 10% (where upward mobility entrants make
up all entrants).

Finally, adding to this argument, in Section 5.1 I found that the aggregate method generates
lower saving rate estimates across the entire wealth (rank) distribution compared to the cross-
sectional method, except at the top 10%. However, without wealth mobility, the total saving
rate out of wealth estimates would be almost identical across the cross-sectional method and
aggregate method (Table 2, counterfactual columns). In other words, the underestimation of
the aggregate method compared to the cross-sectional method until wealth decile 81-90 relates
for the most part to these methods’ distinct treatment of entrant households’ saving rates, and
therefore to diverging contributions of wealth (rank) mobility to saving rate estimates.

5.4 Bias of the synthetic method

In the absence of household-level saving rate data or panel data, researchers have resorted to
the synthetic method to estimate saving rates across the wealth (rank) distribution (e.g. Saez
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Table 3: Bias of the synthetic method versus the unbiased aggregate method for the total
saving rates out of labor income and out of wealth.

Wealth Bin Saving Rate out of Labor Income Saving Rate out of Wealth
Baseline Counterfactual ‘ Bias Baseline Counterfactual ‘ Bias
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
31-40 - - - - - - - -
41-50 -0.00 0.04 0.04 - 0.00 0.06 0.06 -
51-60 0.04 0.06 0.02 48% 0.04 0.05 0.02 50%
61-70 0.06 0.10 0.04 67% 0.03 0.05 0.02  79%
71-80 0.12 0.15 0.03 29% 0.03 0.05 0.01 43%
81-90 0.29 0.25 -0.04 -12% 0.06 0.05 -0.01 -13%
91-100 1.28 0.78 -0.50 -39% 0.11 0.05 -0.06 -53%

Note: this table compares the total saving rate out of labor income (left panel) and out of wealth (right panel),
as estimated by the unbiased aggregate method (baseline) and the biased synthetic method (counterfactual). The
bias introduced by the synthetic method is calculated in two ways: (1) the level difference between the baseline and
counterfactual estimates, and (2) the percentage deviation from the baseline. These calculations follow Equation 21.
The analysis uses the 2001-2021 PSID sample. Edge cases are dealt with as specified in Section 4.2. From decile
1-10 to decile 31-40, saving rates are generally ill-defined. Therefore, the bias estimates for these lower deciles are
not reported.

& Zucman, 2016; Bauluz & Meyer, 2024). As argued in Section 3.3, the synthetic method is
a special type of aggregate estimation method. However, as it traces a different set of house-
holds over time, the synthetic method is biased. In what follows, I quantify this bias based
on the PSID-sample for the saving rate out of labor income and saving rate out of wealth.
The outcomes for the saving rates out of new resources and composite resources are shown in
Appendix D. Two findings persist.

First, the synthetic method overestimates total saving rates in the middle of the wealth distri-
bution (wealth decile 41-50 to wealth decile 71-80), and underestimates them at the top 20%.
As a result, the percentile threshold for the transition between underestimation and overesti-
mation lies around the 80th wealth percentile. Second, the underestimation of the synthetic
method is in general the most substantial at wealth decile 61-70, while the overestimation is
the most significant for the top 10% wealthiest. This explains to a large extent the discrepancy
between the PSID saving rate estimates for the top 10% and the estimates of Saez & Zucman
(2016) that I noted in Section 5.1.

6 Active and passive saving — a decomposition

In this Section, I decompose total saving rate patterns across the wealth (rank) distribution
into active saving (disposable income minus consumption expenditures) and passive saving
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Figure 3: Decomposition of total saving rates into active saving rates and passive saving
rates.
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Note: this figure plots active saving rates and passive saving rates per wealth decile, computed according to the
cross-sectional method (Equation 16). The calculations are executed for the two flow-based (saving rate out of labor
income and new resources) and two stock-based saving rates (saving rate out of wealth and composite resources).
The 2005-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge cases imply that
the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile 31-40 and
lower). The sum of the median active and passive saving rates may be moderately higher than the total saving rate
reported in Table 1. This is because the median total saving rate household will likely be different from the median
active saving rate and median passive saving rate household.

(capital gains and inter-generational transfers). Thereafter, I further decompose the passive
saving across the wealth (rank) distribution into its two components. The decompositions are
conducted using the cross-sectional method. It has been verified that the aggregate method
produces similar findings.

6.1 Active versus passive saving

How does the composition of total saving vary across the wealth (rank) distribution? Two
conclusions can be drawn.
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First, the composition of total saving shifts away from active saving towards passive saving the
higher a household’s position in the wealth (rank) distribution (Figure 3): as households be-
come wealthier, they become more reliant on capital gains and/or inter-generational transfers.
More precisely, households’ total saving between wealth percentiles 21 and 40 relies entirely
on active saving. From the 41st percentile onwards, total saving turns into a mixture of active
and passive saving, with the latter becoming dominant from percentile 51 onwards. For the
top 10%, total saving consists for the most part of passive saving.

Second, as a result of these composition effects, the observed relationship between total saving
rates and wealth (ranks) (in Section 5.1) does not translate directly to active saving rates and
passive saving rates. On the one hand, active flow-based saving rates are rising with wealth
(ranks), but the increase is significantly less pronounced than for total saving rates. In addition,
in contrast to total saving rates, active stock-based saving rates are strongly declining with
wealth (ranks). On the other hand, passive flow-based and stock-based saving rates are both
strongly increasing in wealth (ranks).

6.2 Composition of passive saving

The previous section demonstrated that the composition of total saving shifts toward passive
saving as households become wealthier. At the top 10%, total saving consists for the most part
of passive saving. However, does such passive saving consist primarily of capital gains or
inter-generational transfers? I analyse this based on Figure 4, which reports the passive saving
rate out of new resources for capital gains and net inter-generational transfers separately. The
results for the other saving rates (out of labor income, wealth and composite resources) yield
similar conclusions.

Passive saving of the wealthier households consists predominantly of capital gains rather than
inter-generational transfers. On the one hand, the fraction of households with positive capital
gains rises from around 40% at wealth decile 31-40 to a little over 60% at wealth decile 51-60
(extensive margin). These levels remain stable thereafter (Figure 4, left panel). However, cap-
ital gains make up an increasing fraction of new resources for higher wealth ranks (intensive
margin): the share of capital gains to new resources rises from approximately 10% at the 51st
percentile to over 40% for the top 10% wealthiest (Figure 4, left panel). As a result, passive sav-
ing through capital gains rises across the wealth (rank) distribution primarily through the in-
tensive margin. On the other hand, the fraction of households with positive inter-generational
transfers rises from slightly over 0% for the lowest wealth deciles to close to 15% for the highest
ones (Figure 4, right panel). This low extensive margin makes that the unconditional median
passive saving rate from inter-generational transfers (relative to new resources) equals zero
across the entire wealth (rank) distribution (Figure 4, right panel). The median conditional on
transfer receipts is roughly flat across the wealth (rank) distribution for the flow-based saving
rates and declining for the stock-based ones (Figure 11, Appendix E). Passive saving through
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Figure 4: Decomposition of passive saving into capital gains and inter-generational trans-
fers for the saving rate out of new resources.
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Note: this figure plots (1) the fraction of households with positive passive saving per wealth decile (as bars), and (2)
passive saving rates out of new resources (as lines). The latter are computed based on the cross-sectional method
(Equation 16). The 95% confidence intervals have been determined using bootstrapping. Unlike in Figure 3, passive
saving rates are plotted separately for capital gains (left-hand side) and inter-generational transfers (right-hand
side). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge cases imply
that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile 31-40
and lower).

inter-generational transfers thus rises across the wealth (rank) distribution uniquely through
the extensive margin.

To conclude, wealthier households save for the most part by holding appreciating assets. Ac-
tive saving out of (non capital gains) income is of much less importance. Passive saving out
of inter-generational transfers is more common for wealthier households, but also relatively
unimportant in magnitude®. These results are in line with existing findings for the Nordic
countries: both Bach et al. (2018) as Fagereng et al. (2021) find that the reliance on saving out
of capital gains increases strongly with wealth (ranks).

7 Conclusion

While there exists empirical evidence on saving behavior across the wealth (rank) distribution
in Nordic countries, such evidence is largely absent for the United States. This paper uses
household-level data from the Panel Study of Income Dynamics (PSID) to fill this gap. I ob-
tain four collections of stylized empirical facts. First, I find that total saving rates out of labor
income and new resources rise with wealth ranks (flow-based saving rates). In contrast, to-
tal saving rates out of wealth and composite resources are roughly stable and only modestly
increasing with wealth ranks (stock-based saving rates). Second, wealth (rank) mobility has

8Passive saving out of inter-generational transfers has been computed for a given time period f. A proper
analysis on the importance of inter-generational transfers in wealth accumulation would require a cumulative
metric. I leave this question to future research.
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a substantial impact on total saving rate patterns across the wealth distribution. However,
while the contribution of wealth mobility is strictly positive for the cross-sectional method, it
is negative across most of the wealth distribution for the aggregate method. I show that this
discrepancy relates to these methods” distinct treatment of wealth (rank) mobility: while the
cross-sectional method attaches equal weight to all households in a wealth decile, the aggre-
gate method overweighs households that display downward wealth mobility. Third, I find
that the synthetic method overestimates saving rates up to the 80th percentile, while it un-
derestimates the saving rates of the top 20%. Fourth, I demonstrate that households’ reliance
on capital gains rises across the wealth rank distribution: the top wealthiest households’ total
saving consists predominantly of saving by holding appreciating assets. Passive saving out
of inter-generational transfers is more common for wealthier households, but relatively unim-
portant in magnitude. Many of the empirical saving behavior moments across the wealth
(rank) distribution reported in this paper are likely to be of interest to the heterogeneous agent
literature replicating the U.S. wealth distribution.
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A Budget constraint variables in the PSID

As argued in the main text, computing active saving and passive saving (in the numerator
of the ratios), or new resources and composite resources (in the denominator of the ratios) re-
quires panel data on all budget constraint variables. In this subsection, I outline how I compute
these budget constraint variables using the Panel Study of Income Dynamics (PSID). I denote
PSID-estimated variables with a tilde, e.g. . The PSID includes wealth-related questions only
in the 1984, 1989, 1994 waves and bi-annually from 1999 onwards. I therefore restrict the PSID
data to the period 1999-2021. For future reference, denote a survey wave as s, where:

s € {1999,2001, ...,2019,2021} (32)

Two remarks are in place. First, responding families in the PSID are occasionally unaware of
the exact value of their income or wealth. In that case, for some years and variables, bracketing
questions are provided. I apply the bracketing procedure as discussed in Van Langenhove
(2025a). The results of this paper are robust to whether or not this bracketing procedure is
implemented. Second, for some variables, we are interested in the first difference. For example,
the computation of total saving requires taking the first difference of total wealth (Aw;;1). A
difficulty is that PSID survey waves are conducted only bi-annually, which means that the
wealth in between two waves needs to be interpolated. I do so by taking the midpoint between
two data points (as in e.g. Gaillard & Wangner, 2023). For example, for wealth w:

wt:{wljw ifs—1<t<s (33)

Ws ift=s

As it determines total saving, the most critical budget constraint variable is wealth @. It is de-
fined as households’ total assets minus its total liabilities. Assets include gross main housing,
business holdings, equity holdings, fixed-income holdings, pension wealth and gross other
housing. Pension wealth includes defined contribution (DC) plans, IRAs and private annu-
ities. Liabilities comprise main mortgages outstanding, other housing debt and non-mortgage
debt. I follow the definitions and harmonization procedures outlined in Appendix A of Van
Langenhove (2025a).

A.1 Income variables

Labor income labor income 7 is readily available from the PSID questionnaire. It is reported
separately for the household reference person and spouse. From 2005 onwards, data is avail-
able also for other working household members. I compute household labor income by taking
the sum across all individuals reported in the household.
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Capital income For the computation of the capital income return #, I largely follow Gaillard
& Wangner (2023). This capital income return can be computed straightforwardly from PSID
questions: the PSID questionnaire asks households about different sources of capital income.
Outcomes are reported separately for the reference person and the spouse. I therefore compute
household-level variables by taking the sum over the two individuals. The capital income cate-
gories include farm income, business income, rental income, dividend income, interest income
and trust and royalty income, which can be linked to their corresponding asset categories.

Three notes are in place. First, unlike Gaillard & Wangner (2023), I attribute farm and business
income entirely to capital income. The results in this paper are robust to this assumption. Sec-
ond, rental income is reported only when the household has a secondary house which it rents
out. I do not impute rental income on the main house or impute rental income on occupied
secondary housing as these do not reflect actual financial flows. Third, contrary to Gaillard &
Wangner (2023), I attribute interest income entirely to fixed income assets. However, as this
paper uses only a composite capital income variable as input in the calculation of the saving
rates, this assumption does not affect results.

Capital gains Also for the capital gains return 73, I largely follow Gaillard & Wangner (2023).
Households are asked about the total value of and total inflows and outflows for most assets.
In principle, I define as capital gains the change in the asset’s total value that cannot be ex-
plained by net inflows. I account for the bi-annual nature of survey waves by dividing capital
gains between two survey waves by two, in line with Equation 33. Capital gains are then com-
puted by taking the sum across all wealth categories. There are a number of exceptions and
particular computational choices to this general procedure, however. I discuss these choices
next.

First, for farm and business holdings, the reported values are net of debt up until 2011. Instead,
from 2013 onwards, assets and debts are reported separately. I compute capital gains from the
net value throughout the entire period. This is different from Gaillard & Wangner (2023), who
instead trace out a gross business holdings series prior to 2011 by assuming that changes in
business debt affect business assets one-to-one.

Second, housing consists of main housing and other housing. On the one hand, for main
housing, I compute unrealized capital gains as the change in the reported house value between
the two survey waves, net of depreciation. Moreover, I calculate realized capital gains as the
difference between the housing selling price and the reported housing value in the previous
period, again net of depreciation. On the other hand, for other housing, capital gains are
computed as the difference in reported net other housing values between two survey waves,
corrected for net inflows. Total capital gains on housing are then obtained by summing all
three components and subtracting housing improvement expenditures. For both main and
other housing, I assume a depreciation rate of 2%, in line with Gaillard & Wangner (2023).
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Third, the pension wealth category includes both DC pension plans and IRA (and 401k ac-
counts, Keogh accounts or similar) accounts. However, net inflows are reported only for IRAs.
For DC pension plans, I therefore assume that net inflows equal the sum of the employee and
employer contributions. These are reported for both the reference person and spouse, and both
for current and previous employers. I take the sum across all.

A.2 Government and inter-generational transfers

Government transfer and social security income The PSID contains very detailed questions
on government transfer and social security income. These capture all possible government
transfer and social security income categories. Prior to 2005, social security income is reported
at the family level. From 2005 onwards, it is instead reported separately for the reference per-
son, spouse and other family members. I then take the sum across all three individuals to
obtain a household-level variable. Transfer income is reported separately for all three individ-
ual types throughout the entire 1999-2021 period.

Inter-generational transfers & lumpsum payments The variable 77 contains primarily inter-
generational transfer receipts. Households are asked to report their received gifts or inheri-
tances since the previous survey wave. Moreover, households are asked to report the amount
of financial help they have received from relatives, and the amount of financial help they have
provided to others. I assume that inter-generational transfers equal the sum of received gifts
and inheritances and net help received from others. Moreover, I augment 7 with lumpsum
payment receipts that cannot be attributed to inheritances. These mainly include payouts from
insurance and lottery winnings. However, these lumpsum receipts make up a limited fraction
of 7.

A.3 Consumption expenditures & taxes

Consumption The PSID asks households detailed questions about their consumption ex-
penditures from 1999 onwards. However, for the 1999-2003 waves, PSID questions capture
only around 70% of the expenditures from the Consumption Expenditure Survey (CEX) and
National Income and Product Accounts (NIPA). From 2005 onwards, it captures almost all cat-
egories from the CEX (Andreski et al., 2014). A reliable consumption estimate ¢ in the PSID is
therefore available only from 2005 onwards.

Four remarks are in place. First, I include interest payments on first mortgages, second mort-
gages and consumer debt in the consumption expenditures. While interest payments on first
mortgages are reported in the PSID questionnaires, those on second mortgages and consumer
debt are not. I therefore estimate these by respectively taking the fixed 30-year mortgage inter-
est rate and personal loan interest rate from the FRED and multiplying these with the house-
hold’s previous-period debt stock. Second, mortgage principal payments however are ex-
cluded from consumption: I consider these as a form of saving as they generate higher wealth
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(i.e. higher net worth). Third, rental payments of non-house-owning households are included
as part of consumption expenditures.

Taxes The PSID does not provide any tax payment data beyond property taxes. Taxes (T)
therefore needs to be estimated. I use the following four-step strategy. First, to estimate in-
come, payroll and capital gains taxes, I use the NBER tax simulator. The details of this proce-
dure are described below and are similar to Kimberlin et al. (2015). Second, I collect tax rates
for estates throughout the years and apply these to the inter-generational transfers variable.
However, due to the high exemptions on estate taxes, only a handful of observations in the
sample are in fact affected by this estate taxation. Third, property taxes and motor vehicle
taxes are reported by the household in the PSID. Fourth, I sum the estimated payroll, income
and capital gains taxes (NBER simulator), estate taxes and reported property and motor vehi-
cle taxes to obtain a total household-level tax estimate 7.

NBER tax simulator 1 use NBER tax simulator version v35. The estimation of payroll, income
and capital gains taxes requires providing a large set of demography- and income-related input
variables to the simulator. All required variables can be computed from the PSID. A number
of remarks are in place, however. First, the NBER tax simulator expects a value for short-
term and long-term realized capital gains. I have no clear-cut method to distinguish between
the short versus long term nature of capital gains, or between realized and unrealized (apart
from main housing) gains. I therefore assume that realized capital gains equal 20% of total
capital gains, and attribute these entirely to long-term gains. Moreover, I take into account the
exemption threshold on housing capital gains over the years. Second, the PSID questionnaire
reports household tax deductions on charitable contributions, childcare and medical expenses.
I therefore do not include these in the NBER tax simulator and use the PSID-reported value
instead.

A.4 Household composition changes

A unique PSID family unit consists of a reference person and possibly a partner. The data
structures guarantees that saving rates can be computed for a wave s only when the family unit
had the same reference person and partner over wave s and previous wave s — 1. In principle,
ij therefore equals zero in our data. However, individuals different from the reference person
or partner (most commonly children, siblings or elderly) may enter or exit the family unit, and
bring assets or debts with them. In case of such event, these new assets and debts are reported
in the PSID questionnaire. I define 7j to their net value.
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B Robustness: total saving behavior across the wealth (rank) distri-
bution (Sections 5.1 and 5.2)

B.1 Saving rates over time

In this subsection, I plot active and passive saving rates across the wealth (rank) distribution
for different year groups. In the main text, I demonstrated that total saving rates were higher
across the wealth (rank) distribution for the 2019-2021 period, and lower for the 2007-2011
period. Here, I plot active saving rates and passive saving rates (Figures 5 and 6). I find that
the high total saving across the wealth (rank) distribution for the 2019-2021 period followed
from both higher active and passive saving, whereas the low total saving for the 2007-2011
related primarily to lower passive saving.

B.2 Robustness checks

In this subsection, I present the figures for the robustness checks to the relationship between
total saving rates and wealth (ranks), as discussed in Section 5.1 of the main text. I discuss
four robustness checks. First, I summarize the saving rates per wealth decile d using the mean
instead of the median (Figure 7). Second, I plot the relationship between total saving rates
and wealth (ranks) across different labor income groups (Figure 8). Third, I do the same for
different age groups (Figure 9). Fourth, I compare total saving rates across the wealth (rank)
distribution for non-entrepreneurial and entrepreneurial households (Figure 10).
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Figure 5: Cross-sectional method— active flow-based and stock-based saving rates across
wealth deciles over different survey waves.
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Note: this figure plots the active saving rates per wealth decile, grouped across different PSID survey waves. The
saving rates per wealth decile have been computed using the cross-sectional method (Equation 16). The waves are
pooled as: {2001,2003,2005}, {2007,2009,2011}, {2013,2015,2017} and {2019,2021}. The first wave only contains
the year 2005 as the active saving variable is defined only from 2005 in the PSID. The black line shows the baseline
results without grouping. The calculations are executed for the two flow-based (active saving rates out of labor
income and new resources) and two stock-based saving rates (active saving rates out of wealth and composite
resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge cases
imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth decile
31-40 and lower).
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Figure 6: Cross-sectional method — passive flow-based and stock-based saving rates across
wealth deciles over different survey waves.
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Note: this figure plots the passive saving rates per wealth decile, grouped across different PSID survey waves. The
saving rates per wealth decile have been computed using the cross-sectional method (Equation 16). The waves
are pooled as: {2001,2003,2005}, {2007,2009,2011}, {2013,2015,2017} and {2019,2021}. The black line shows the
baseline results without grouping. The calculations are executed for the two flow-based (passive saving rates out
of labor income and new resources) and two stock-based saving rates (passive saving rates out of wealth and
composite resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge
cases imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth
decile 31-40 and lower).
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Figure 7: Cross-sectional method — total flow-based and stock-based saving rates across
wealth deciles: mean (robustness, red line) versus median (baseline, black line) as summary
metric.
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Note: this figure plots the (1) the fraction of households with positive total savings per wealth decile (as bars), and
(2) mean and median total saving rates per wealth decile, computed according to the cross-sectional method of
Equation 16 (as lines). The median (baseline) is plotted as a black line, the mean (robustness) as a red one. The
calculations are executed for the two flow-based (total saving rate out of labor income and new resources) and two
stock-based saving rates (total saving rate out of wealth and composite resources). The 2001-2021 sample is used.
Edge cases are dealt with as specified in Section 4.2. The edge cases imply that the saving rates out of wealth and
composite resources are ill-defined for the bottom 35% (wealth decile 31-40 and lower).
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Figure 8: Cross-sectional method — total flow-based and stock-based saving rates across
wealth deciles for different labor income (rank) groups.
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Note: this figure plots total saving rates per wealth decile across different labor income groups. The saving rates
per decile have been computed using the cross-sectional method (Equation 16). Households are allocated to a
labor income group based on their rank in the labor income distribution. Labor income also includes government
transfers (including social security income). The calculations are executed for the two flow-based (total saving
rate out of labor income and new resources) and two stock-based saving rates (total saving rate out of wealth and
composite resources). The 2001-2021 sample is used. Edge cases are dealt with as specified in Section 4.2. The edge
cases imply that the saving rates out of wealth and composite resources are ill-defined for the bottom 35% (wealth
decile 31-40 and lower). Values are plotted only when the labor income group—wealth decile combination has a
minimum of 250 observations.
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Figure 9: Cross-sectional method — total flow-based and stock-based saving rates across

wealth deciles for different age groups.
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Note: this figure plots total saving rates per wealth decile across different age groups. The saving rates per decile
have been computed using the cross-sectional method (Equation 16). Households are allocated to a labor income
group based on the age of the reference person of the PSID-household. The calculations are executed for the two
flow-based (total saving rate out of labor income and new resources) and two stock-based saving rates (total saving
rate out of wealth and composite resources). The 2001-2021 sample is used. Edge cases are dealt with as specified
in Section 4.2. The edge cases imply that the saving rates out of wealth and composite resources are ill-defined
for the bottom 35% (wealth decile 31-40 and lower). Values are plotted only when the age group—wealth decile

combination has a minimum of 250 observations.
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Figure 10: Cross-sectional method — total flow-based and stock-based saving rates across
wealth deciles: non-entrepreneurial versus entrepreneurial households.
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Note: this figure plots the median total saving rates per wealth decile (computed according to the cross-sectional
method in Equation 16) for non-entrepreneurial households ("households’, in red) and entrepreneurial households
(‘entrepreneurs’, in green) separately. The baseline over all households is added for comparison purposes (in black).
Households are designated as entrepreneurs when they report business ownership in the PSID-questionnaires. The
calculations are executed for the two flow-based (total saving rate out of labor income and new resources) and two
stock-based saving rates (total saving rate out of wealth and composite resources). The 2001-2021 sample is used.
Edge cases are dealt with as specified in Section 4.2. The edge cases imply that the saving rates out of wealth and
composite resources are ill-defined for the bottom 35% (wealth decile 31-40 and lower).
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C Contribution of wealth (rank) mobility (Section 5.3)

In this Appendix, I quantify the contribution of wealth (rank) mobility to observed saving rate
patterns across the wealth (rank) distribution for the total saving rates out of labor income,

new resources and composite resources.
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Table 4: Contribution of wealth (rank) mobility to total saving rate out of labor income
according to the narrow approach.

Wealth Bin Cross-Sectional Method Aggregate Method
Baseline Counterfactual ‘ Contribution || Baseline Counterfactual | Contribution
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
31-40 - - - - - - - -
41-50 0.09 0.04 0.05 53% -0.00 0.05 -0.05 -1223%
51-60 0.13 0.06 0.07  53% 0.04 0.07 -0.03  -88%
61-70 0.19 0.10 0.08 44% 0.06 0.12 -0.06  -111%
71-80 0.24 0.15 0.09 37% 0.12 0.19 -0.07  -60%
81-90 0.44 0.26 0.18 41% 0.29 0.31 -0.02 -7%
91-100 0.85 0.50 035 41% 1.28 0.98 0.30 23%

Note: this table reports the total saving rate out of labor income, estimated using the cross-sectional method (left
panel) and the aggregate method (right panel). For both methods, I apply the narrow approach to quantify the
contribution of endogenous wealth (rank) mobility, as defined in Equation 18 for the cross-sectional method and
Equation 21 for the aggregate method. The ‘baseline” column shows the observed saving rate, the ‘counterfactual’
column shows the rate under a hypothetical scenario without wealth mobility. The "contribution” columns report
(1) the level difference between the baseline and counterfactual, and (2) the percentage deviation from the baseline.
These indicate the magnitude and direction of the mobility effect. The analysis is based on the 2001-2021 sample.
Edge cases are dealt with as specified in Section 4.2. From decile 1-10 to decile 31-40, saving rates are generally
ill-defined. Therefore, the values of the narrow approach are not reported.
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Table 5: Contribution of wealth (rank) mobility to total saving rate out of new resources
according to the narrow approach.

Wealth Bin Cross-Sectional Method Aggregate Method
Baseline Counterfactual ‘ Contribution || Baseline Counterfactual | Contribution
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
31-40 - - - - - - - -
41-50 0.09 0.05 0.04 49% -0.01 0.05 -0.06 -1032%
51-60 0.13 0.06 0.07 51% 0.04 0.08 -0.04 -90%
61-70 0.19 0.12 0.07 38% 0.06 0.12 -0.06  -95%
71-80 0.21 0.14 0.07 33% 0.11 0.17 -0.06  -58%
81-90 0.29 0.18 0.12  39% 0.23 0.25 -0.03  -11%
91-100 0.38 0.24 0.14 37% 0.53 0.40 0.13 25%

Note: this table reports the total saving rate out of new resources, estimated using the cross-sectional method (left
panel) and the aggregate method (right panel). For both methods, I apply the narrow approach to quantify the
contribution of endogenous wealth (rank) mobility, as defined in Equation 18 for the cross-sectional method and
Equation 21 for the aggregate method. The ‘baseline” column shows the observed saving rate, the ‘counterfactual’
column shows the rate under a hypothetical scenario without wealth mobility. The "contribution” columns report
(1) the level difference between the baseline and counterfactual, and (2) the percentage deviation from the baseline.
These indicate the magnitude and direction of the mobility effect. The analysis is based on the 2001-2021 sample.
Edge cases are dealt with as specified in Section 4.2. From decile 1-10 to decile 31-40, saving rates are generally
ill-defined. Therefore, the values of the narrow approach are not reported.
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Table 6: Contribution of wealth (rank) mobility to total saving rate out of composite re-
sources according to the narrow approach.

Wealth Bin Cross-Sectional Method Aggregate Method
Baseline Counterfactual ‘ Contribution || Baseline Counterfactual | Contribution
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
31-40 - - - - - - - -
41-50 0.05 0.03 0.03  49% -0.01 0.03 -0.04 -541%
51-60 0.06 0.03 0.03 57% 0.01 0.03 -0.02  -107%
61-70 0.06 0.04 0.02 44% 0.02 0.03 -0.02  -128%
71-80 0.06 0.04 0.02 35% 0.02 0.04 -0.01  -78%
81-90 0.07 0.04 0.03 44% 0.04 0.04 -0.00 -8%
91-100 0.08 0.05 0.03 39% 0.08 0.05 0.03  37%

Note: this table reports the total saving rate out of composite resources, estimated using the cross-sectional method
(left panel) and the aggregate method (right panel). For both methods, I apply the narrow approach to quantify the
contribution of endogenous wealth (rank) mobility, as defined in Equation 18 for the cross-sectional method and
Equation 21 for the aggregate method. The ‘baseline” column shows the observed saving rate, the ‘counterfactual’
column shows the rate under a hypothetical scenario without wealth mobility. The "contribution” columns report
(1) the level difference between the baseline and counterfactual, and (2) the percentage deviation from the baseline.
These indicate the magnitude and direction of the mobility effect. The analysis is based on the 2001-2021 sample.
Edge cases are dealt with as specified in Section 4.2. From decile 1-10 to decile 31-40, saving rates are generally
ill-defined. Therefore, the values of the narrow approach are not reported.
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D Bias of the synthetic method (Section 5.4)

Table 7: Bias of the synthetic method relative to the (unbiased) aggregate method for the
total saving rates out of new resources and out of composite resources.

Wealth Bin Saving Rate out of New Resources Saving Rate out of Composite Resources
Baseline Counterfactual Bias Baseline Counterfactual Bias
1-10 - - - - - - - -
11-20 - - - - - - - -
21-30 - - - - - - - -
3140 - - - - - - - -
41-50 -0.01 0.03 0.04 621% -0.01 0.02 0.02  286%
51-60 0.04 0.05 0.01 21% 0.01 0.02 0.01 38%
61-70 0.06 0.08 0.02  24% 0.02 0.02 0.01 62%
71-80 0.11 0.11 0.00 0% 0.02 0.03 0.01  28%
81-90 0.23 0.16 -0.07  -32% 0.04 0.03 -0.01  -13%
91-100 0.53 0.47 -0.07  -12% 0.08 0.04 -0.03  -45%

Note: this table compares the total saving rate out of new resources (left panel) and composite resources (right
panel), as estimated by the unbiased aggregate method (baseline) and the biased synthetic method (counterfac-
tual). The bias introduced by the synthetic method is calculated in two ways: (1) the level difference between the
baseline and counterfactual estimates, and (2) the percentage deviation from the baseline. These calculations follow
Equation 21. The analysis uses the 2001-2021 PSID sample. Edge cases are dealt with as specified in Section 4.2.
From decile 1-10 to decile 31-40, saving rates are generally ill-defined. Therefore, the bias estimates for these lower
deciles are not reported.
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E Decomposition into active and passive saving (Section 6)

Section 6 of the main text decomposed total saving rates into active saving and passive saving.
This decomposition was produced for the two flow-based and two stock-based saving rates.
Thereafter, I decomposed passive saving by plotting the capital gains and inter-generational
transfer saving rate out of new resources across wealth deciles, reporting their unconditional
medians.

In this Appendix, I provide additional visualizations to the latter analysis (decomposition
of passive saving into capital gains and inter-generational transfers). Specifically, I present
inter-generational transfer saving rates using conditional rather than unconditional medians
(as in the main text). This allows to assess whether there exists a relationship between inter-
generational transfer saving rates and wealth (ranks), conditional on receiving such transfers
(at the intensive margin).

I find that conditional inter-generational saving rates are roughly stable across the wealth
(rank) distribution for the two flow-based saving rates, and declining with wealth (ranks) for
the two stock-based saving rates (Figure 11). This suggests that, based on the intensive margin,
the importance of inter-generational transfer saving is definitely not increasing with a house-
hold’s position in the wealth (rank) distribution. However, as shown in Figure 11 (bars) and in
the main text, it is rising in the extensive margin.
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Figure 11: Inter-generational transfer flow-based and stock-based saving rates across wealth
deciles.
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Note: this figure plots (1) the fraction of households with positive inter-generational transfer savings per wealth
decile (as bars), and (2) the inter-generational transfer saving rates per wealth decile (as lines). The latter have
been computed using the cross-sectional method (Equation 16). Unlike for the other plots in this paper, (2) takes
the median conditional on having positive inter-generational transfer savings. The calculations are executed for
the two flow-based (total saving rate out of labor income and new resources) and two stock-based saving rates
(total saving rate out of wealth and composite resources). The 2001-2021 sample is used. Edge cases are dealt with
as specified in Section 4.2. The edge cases imply that the saving rates out of wealth and composite resources are
ill-defined for the bottom 35% (wealth decile 31-40 and lower).
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F Saving ratios

As noted in Section 2.3, heterogeneous agent models often incorporate the saving ratio ¢ as
policy variable rather than the saving rates defined in the main text. The saving ratio is defined
in Equation 12 and represents the fraction of composite resources AC (in the denominator)
that is transferred by the household to the next time period in the form of wealth w (in the
numerator). Table 8 reports the saving ratio outcomes across the wealth (rank) distribution
using the inflow-based approach. The results for the consumption-based approach are roughly
identical. Two key findings persist.

First, the fraction of households with positive saving ratios equals zero for the bottom 20% and
approximately 0.57 for wealth decile 21-30. It then equals close to one for all higher wealth
deciles. This pattern follows directly from the wealth term in the numerator of Equation 12:
wealth is negative for all households in the bottom 20%, and turns positive close to the 30th
wealth percentile. Second, for households with non-negative wealth, there exists a positive
relationship between saving ratios and wealth (ranks): the saving ratio in the middle part of
the wealth distribution equals around 0.50 and rises monotonically to 0.90 for the top 10%
wealthiest households.
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Table 8: Cross-sectional method — saving ratios across wealth deciles.

Wealth Decile | Fraction Positive Savers ‘ Saving Ratio

1-10 0.00 0.00
(0.00, 0.00)
11-20 0.00 -0.07
(-0.07, -0.06)
21-30 0.57 0.00
(0.00, 0.01)
31-40 0.98 0.20
(0.19, 0.21)
41-50 0.99 046
(0.45, 0.47)
51-60 1.00 0.63
(0.62, 0.63)
61-70 1.00 0.73
(0.73, 0.74)
71-80 1.00 081
(0.80, 0.81)
81-90 1.00 0.85
(0.85, 0.86)
91-100 1.00 0.89
(0.88, 0.89)

Note: this table reports (1) the fraction of households with a strictly positive saving ratio, and (2) the median saving
ratio ¢ per wealth decile. Saving ratios are computed as the ratio of wealth to composite resources (Equation 12)
using the cross-sectional method (Equation 16) under the inflow-based approach. Confidence intervals are reported
in parentheses below the median estimates and are based on bootstrapping. The 2001-2021 sample is used. Edge
cases are handled as detailed in Section 4.2. Saving ratios are ill-defined for a large share of households in the
bottom wealth deciles.

142



G Expenditure-based approach

Section 4.2 distinguished between an inflow-based approach and expenditure-based approach
to compute new resources AN and composite resources A® from the PSID-data. The former
is applied over the 2001-2021 sample, while the latter is computed over the 2005-2021 sample.
In the main text, I have reported total saving rates out of new and composite resources based
on the inflow-based approach. In this Appendix, I compare the outcomes of the inflow-based
approach to the expenditure-based approach. I conduct the comparative exercise for total
saving rates (reported in Table 1 in the main text). The results for the total saving rate out of
new resources are plotted in Figure 12, while those for the total saving rate out of composite
resources are displayed in Figure 13.

For both saving rates, the consumption-based approach yields slightly higher saving rates es-
timates than the inflow-based approach for higher wealth deciles, especially when using the
cross-sectional method. The differences are highly limited, however. This minor gap may
reflect two effects. First, it could relate to sample differences: the inflow-based approach
uses the 2001-2021 sample, while the consumption-based approach departs from the 2005-2021
sample. However, I have checked that the gap between the two approaches remains roughly
unchanged when applying the inflow-based approach to the 2005-2021 sample. Second, there-
fore, the gap between both approaches must follow from the lower AN and A estimates that
the consumption-based approach generates. This most likely relates to an underestimation of
consumption expenditures ¢;(t) in the PSID survey data. Such downward bias intensifies for
higher wealth levels.
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Figure 12: Total saving rate out of new resources in the inflow-based approach (left panel)
and expenditure-based approach (right panel).

(a) Inflow-based (b) Expenditure-based
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Wealth Decile Wealth Decile

Note: this figure plots (1) the fraction of households with positive total savings per wealth decile (as bars), and (2)
total saving rates out of new resources per wealth decile (as lines). The latter have been computed based on the
cross-sectional method (in black, Equation 16) and the aggregate method (in red, Equation 19). The 95% confidence
intervals have been determined using bootstrapping. The calculations are executed for the inflow-based approach
and expenditure-based approach, as outlined in Section 4.2. The 2001-2021 sample is used. Edge cases are dealt
with as also specified in Section 4.2. The edge cases imply that the saving rates out of wealth and composite
resources are ill-defined for the bottom 35% (wealth decile 31-40 and lower).

Figure 13: Total saving rate out of composite resources in the inflow-based approach (left
panel) and expenditure-based approach (right panel).

(a) Inflow-based (b) Expenditure-based
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Note: this figure plots (1) the fraction of households with positive total savings per wealth decile (as bars), and (2)
total saving rates out of composite resources per wealth decile (as lines). The latter have been computed based
on the cross-sectional method (in black, Equation 16) and the aggregate method (in red, Equation 19). The 95%
confidence intervals have been determined using bootstrapping. The calculations are executed for the inflow-
based approach and expenditure-based approach, as outlined in Section 4.2. The 2001-2021 sample is used. Edge
cases are dealt with as also specified in Section 4.2. The edge cases imply that the saving rates out of wealth and
composite resources are ill-defined for the bottom 35% (wealth decile 31-40 and lower).
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Chapter 3

Wealth Inequality and Wealth Mobility in the United States: Type

Dependence Versus Scale Dependence !

This paper uses heterogeneous agent models reliant on both type dependence and scale depen-
dence to jointly study wealth inequality and wealth mobility in the United States. The study
makes four contributions to the literature. First, I provide a generalized theoretical framework
that allows for various sources of agent heterogeneity and explicitly defines type dependence
and scale dependence and their theoretical properties. Second, I show that the distinction
between type dependence and scale dependence is critical for studying wealth mobility: com-
pared to scale-dependent models, type-dependent models imply higher wealth mobility for
identical wealth inequality outcomes. Third, I construct an Aiyagari-Bewley-Huggett hetero-
geneous agent model with households and entrepreneurs that jointly matches (untargeted)
U.S. wealth inequality and U.S. wealth mobility in 2021. I find that a mixture of scale depen-
dence and type dependence in saving behavior and portfolio allocation is critical in achieving
this empirical match. Fourth, I show that labor income inequality and saving ratio heterogene-
ity are the core contributors to short-run and long-run persistence across the wealth (rank)
distribution. In general, there exists an inverse relationship between wealth inequality and
wealth mobility.

!Ghent University (email: christophe.vanlangenhove@ugent.be). I acknowledge the financial support from the
Research Foundation Flanders (FWO, project number: 1115324N). The computational resources (Stevin Supercom-
puter Infrastructure) and services used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by Ghent University, FWO and the Flemish Government — department EWI. I would like to thank Arthur
Apostel, Paula Gobbi, Freddy Heylen, Michal Kobielarz, Jan Lorenz, Yasin Kiirsat Onder, Gert Peersman, Alberto
Russo, Jan Schulz-Gebhard and Dirk Van de gaer for their valuable feedback and comments on this paper.
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1 Introduction

Over the past decade, wealth inequality in the United States has become a more prominent
topic of academic research, both from an empirical perspective (e.g. Saez & Zucman, 2016;
Smith et al., 2023) and from a theoretical point of view (e.g. Benhabib et al., 2019; Cioffi, 2021;
De Nardi & Fella, 2017; Fernandez-Villaverde & Levintal, 2024; Hubmer et al., 2021; Kaymak
et al., 2022; Xavier, 2021). These studies focus on measuring and decomposing (1) U.S. wealth
inequality at a given point in time, and (2) the increase in U.S. wealth inequality observed since
the beginning of the 1980s.

Theoretical Aiyagari-Bewley-Huggett heterogeneous agent models link the presence of wealth
inequality to four sources (e.g. Benhabib et al., 2019): (1) labor income heterogeneity ('stochas-
tic earnings’), (2) saving rate heterogeneity, (3) capital income heterogeneity, (4) a positive re-
lationship between asset returns and wealth. To produce such heterogeneities, heterogeneous
agent models often distinguish between type dependence and scale dependence in agents’
parameters or variables. However, at this point, no explicit, formal definition of such type
dependence and scale dependence exists. In addition, type-dependent and scale-dependent
process parameters are estimated without reference to underlying data.

Moreover, it would be relevant to connect wealth inequality to wealth mobility. High wealth
inequality might be less (more) detrimental if it coincides with high (low) wealth mobility at
the top of the wealth distribution. In recent years, empirical work has quantified the degree of
wealth mobility in the United States (Pfeffer & Killewald, 2018; Van Langenhove, 2025a). It has
also found U.S. wealth mobility to have declined since the end of the 1980s (Van Langenhove,
2025a). However, with some exceptions (Atkeson & Irie, 2022; Benhabib et al., 2019; Benhabib
et al., 2022; Fisher, 2019; Gomez, 2023; Hubmer et al., 2024), there exists little theoretical work
investigating the interdependence between wealth inequality and wealth mobility drivers.

Outline of the paper In response to these research gaps, the present paper (i) provides a
formalized definition of type dependence and scale dependence, (ii) demonstrates that the
type dependence versus scale dependence distinction is critical for matching wealth mobility
outcomes, (iii) outlines a novel strategy to estimate the type-dependent and scale-dependent
parameters in heterogeneous agent models, and (iv) conducts counterfactual analyses on the
estimated model to investigate the interdependence between wealth inequality and wealth
mobility. I detail these four steps in what follows.

In a first step, I outline a generalized theoretical framework that allows for three sources of
agent heterogeneity: (1) heterogeneity due to randomness, (2) heterogeneity in agents’ state
variable parameters, and (3) heterogeneity in agents’ policy variables. The latter two structural
agent heterogeneity sources are posited to relate to the interplay between a type-dependent
term and a scale-dependent term. In short, the type-dependent term reflects time-varying
structural heterogeneity across agents (ex-ante heterogeneity), while the scale-dependent term
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captures the heterogeneity that follows from differences in wealth or other model state vari-
ables (ex-post heterogeneity). I provide a formal, generalized definition for the existence of
type dependence and scale dependence, and delineate two theoretical moments that summa-
rize the degree of type dependence and scale dependence. The generalized framework embeds
the driving forces of wealth inequality that are found to be critical in the existing literature. Fi-
nally, I provide an extensive literature overview of the empirical evidence on state variable
parameter and policy variable heterogeneity across the wealth (rank) distribution.

In a second step, I derive the stationary states of simplified heterogeneous agent models to
make three theoretical points that underscore the importance of the type versus scale depen-
dence distinction. First, I demonstrate that type-dependent and scale-dependent worlds can
generate empirical data patterns that are largely indistinguishable. This makes it challeng-
ing to infer the degree of type dependence versus scale dependence from empirical datasets.
Second, an existing literature has shown that the distinction between type dependence and
scale dependence matters for wealth taxation (e.g. Gaillard & Wangner, 2023; Gerritsen et al.,
2025). I add to these studies by showing that it matters also for wealth mobility outcomes:
even when generating identical stationary wealth inequality, type-dependent models predict
higher wealth mobility than scale-dependent ones. Imposing a realistic degree of type de-
pendence versus scale dependence in Aiyagari-Bewley-Huggett economies is therefore crit-
ical for matching stationary wealth mobility outcomes. Third, I show that the relationship
between wealth mobility and the scale- and type-dependent parameters is characterized by
non-linearities.

In a third step, I construct a full-fledged Aiyagari-Bewley-Huggett heterogeneous agent model
with households and entrepreneurs. Households maximize an optimization problem with
non-homothetic preferences and entrepreneurship is modeled along the lines of Cagetti & De
Nardi (2006). I present a novel, model-driven strategy that estimates the degree of type depen-
dence versus scale dependence in households’ saving ratio behavior and portfolio allocation
using the heterogeneous agent model in combination with data from the Panel Study of In-
come Dynamics (PSID). The innovation of this strategy lies in the linkage it creates between
a theoretical scale-dependent function and its corresponding type-dependent structure, which
is taken from the data. I show that the estimated model replicates well joint U.S. wealth in-
equality and wealth mobility outcomes in 2021 (which are untargeted model moments).

In a fourth step, I use the estimated heterogeneous agent model to assess the driving forces
behind wealth inequality and wealth mobility. I do this by generating counterfactual wealth
distributions when shutting down labor income inequality, taxation, saving ratio inequality
and different components of return heterogeneity. Three findings persist. First, allowing for a
realistic degree of saving ratio type dependence is critical in matching wealth mobility in the
stationary model state to its empirical counterpart. Second, labor income inequality and saving
ratio inequality are found to be the core driving forces behind agents’ persistence in the wealth

147



(rank) distribution in both the short-run and the long-run. Return heterogeneity is found to
be less important. Third, in general, there is an inverse relationship between wealth inequality
and wealth mobility: higher wealth inequality coincides with lower wealth mobility.

Related literature & contributions This paper contributes to two strands of the literature.
First, the generalized type and scale dependence definitions and the novel type and scale
dependence estimation strategy contribute to the broad literature on heterogeneous agents.
Given that I demonstrate the importance of type dependence versus scale dependence for
wealth mobility outcomes, the framework relates most directly to Aiyagari-Bewley-Huggett
heterogeneous agent models of the wealth distribution (e.g. Azzalini et al., 2023; Benhabib &
Bisin, 2018; Benhabib et al., 2019; Benhabib et al., 2024; Cioffi, 2021; De Nardi & Fella, 2017;
Hubmer et al., 2021; Fernandez-Villaverde & Levintal, 2024; Kim et al., 2024; Xavier, 2021).
However, the type versus scale dependence distinction is relevant also to any other model that
embeds heterogeneous agents. This includes for example the heterogeneous agent literature
on the U.S. housing market (e.g. Favilukis et al., 2017) and the HANK literature on business
cycle dynamics (e.g. Kaplan et al., 2018).

Second, the paper contributes to the Aiyagari-Bewley-Huggett heterogeneous agent literature
replicating the wealth distribution. Specifically, I develop a calibrated model that matches not
only the U.S. wealth distribution, but also its turnover (i.e. wealth mobility). Furthermore, I
provide a decomposition of the joint driving forces behind wealth inequality and wealth mo-
bility. While there exist a handful of papers studying wealth inequality and wealth mobility
jointly (Atkeson & Irie, 2022; Benhabib et al., 2019; Benhabib et al., 2022; Fisher, 2019; Gomez,
2023; Hubmer et al., 2024), these papers do not link wealth mobility to the interplay between
type versus scale dependence despite importance of this distinction for mobility outcomes.
Moreover, existing theoretical work focuses on a handful of wealth inequality-generating chan-
nels at most. On the contrary, the present paper allows for a wide range of structural agent
heterogeneities, provides a literature overview on their empirical relevance, and calibrates a
heterogeneous agent model that is rigorously embedded in empirical micro data outcomes.

Roadmap This paper proceeds as follows. Section 2 provides a generalized theoretical frame-
work where agents face three sources of heterogeneity. These sources of heterogeneity are
related to type dependence and scale dependence, which are defined formally. Section 3 op-
erationalizes the generalized framework by introducing specific state variable processes and
providing a literature overview of the empirical evidence on state variable parameter hetero-
geneity and policy variable heterogeneity across the wealth (rank) distribution. Finally, I define
wealth inequality and wealth mobility outcome metrics. Section 4 outlines simplified hetero-
geneous agent models with saving ratio inequality as dominant inequality-inducing channel.
It uses these models to provide three theoretical dependence insights. Section 5 constructs and
estimates a full-fledged heterogeneous agent model that matches untargeted U.S. wealth in-
equality and wealth mobility for 2021. Section 6 decomposes the driving forces behind station-
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ary wealth inequality and mobility by generating counterfactual wealth distributions. Section
7 concludes.

2 A generalized theoretical framework

In this Section, I outline a generalized theoretical framework that allows for agent heterogene-
ity in different dimensions. I posit that agents’ state variable parameters and policy variables
are determined by the interplay between a type-dependent and scale-dependent term. In out-
lining the framework, this paper is the first to provide an explicit definition for type depen-
dence and scale dependence. It generalizes the formulations presented in for instance Gabaix
et al. (2016), Gaillard & Wangner (2023), Gerritsen et al. (2025), Van Langenhove (2025a) and
Xavier (2021). In addition, I define two theoretical moments that characterize the degree of
scale dependence and type dependence. The generalized framework embeds the sources of
wealth inequality underscored in the theoretical literature.

2.1 Model environment

Budget constraints I denote agents with subscript i. The economy is populated by two types
of agents: households (x; = 0) and entrepreneurs (x; = 1). Households participate in the labor
market and allocate their wealth between a riskless asset, equity and housing. Entrepreneurs
rely entirely on their business as a source of income, which is similar to for example Gomez
& Gouin-Bonenfant (2024). It is also in line with empirical findings on entrepreneurship in
Moskowitz & Vissing-Jorgensen (2002) and Kartashova et al. (2014). Agents are infinitely
lived ("dynasties’).

Let us define the budget constraints for household and entrepreneurial agents. First, the bud-
get constraint of a household i at time ¢ (x;; = 0) is given by:

h h h h h
w1 = iy [yi,t + [1 + l/’f,t“f,t"f,t + gt + (1—- lpf,t“?,t - lpi,t‘xi,t)r{t] Wit — Ti,t} 1)

where w denotes wealth, y labor income, ¢ equity participation € (0,1), ¥" housing partici-
pation € (0,1), a° the conditional equity portfolio share, a the conditional housing portfolio
share, ° the equity return, 7" the housing return, / the riskless return and T taxes. In the
remainder of the paper, I abstract from indebtedness: the borrowing constraint is set at zero
(w > 0). The term in outer parentheses in Equation 1 reflects the household’s available re-
sources. 6 is the saving ratio: it shows the fraction of available resources that are transferred
by the household to the next period. A fraction 1 — 6 is then used for consumption. Second, I
denote business-specific returns as * and the share of an entrepreneur’s business holdings in
its total wealth as a’. The budget constraint of an entrepreneurial agent i at ¢ (x;; = 1) is then
provided by:

Wiry1 = Oy Hl + zxﬁ’,trf{t +(1- zxf?,t)riflt} Wi — Tilt} ()
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State variables & policy variables An agent i has six state variables: its labor income v; ;, the
equity return r{,, the housing return rff ., the business-specific return rf’, ., the riskless return r{ ;
and its taxes T; ;. Agents’ state variables are exogenous to the agent and are assumed to follow
finite-state Markov processes with parameters Z. An exception to this are the riskless return
and taxes, which are deterministic. I outline the determination of the state variables in Section

2.2. For future reference, I collect the state variables in a set S. For an agent i at time ¢:
Si,t = {yi,t/ r?,t/ r?,t/ r?,t/ r{t’ Ti,t} (3)

In addition, an agent i is designated to have ten policy variables: its entrepreneurship entry
probability p;’, entrepreneurship exit probability p;7’, its saving ratio 6, +, equity entry proba-
bility p;, equity exit probability p}, equity portfolio share &, housing entry probability pf.f v,
housing exit probability pff’to, housing portfolio share oc?, ; and business portfolio share 06?, ;- The
entry and exit probabilities are computed conditional on non-participation and participation
respectively. Each of the ten policy variables take on values € [0,1] and are decided on by
agents given their state variable parameters &, ;, detailed below. I outline the determination of
the policy variables in Section 2.3. Furthermore, I collect these policy variables in a set A for

future reference. For an agent i at time ¢:
. x,e X,0 ) ee e,0 e h,e h,0 h b
Ai,t - {pi,t ’ Pi,t ’ Ql,t/ pi,tl pi,tf Xitr pi,t ’ pi,t r Kips “i,t} (4)

Sources of agent heterogeneity There exist three sources of agent heterogeneity in this the-
oretical framework. First, agents may face heterogeneous realizations of their state variables
as a result of randomness (or equivalently, ‘risk” or "stochasticity’): S;; # S;; (‘source 1’). For
example, agent A may have a higher equity return realization compared to agent B. Second,
agents might be structurally heterogeneous in the parameters underlying the state variable
stochastic processes, i.e. &;; # &;j; (‘source 2’). Such structural heterogeneity follows from
both parameter-level type dependence and scale dependence, which is specified in Section
2.2. It implies that agents operate in different playing fields. For example, agent A may face
an equity return process with a higher expected return or lower expected volatility compared
to agent B. Third, agents may be structurally heterogeneous in their policy variables € A, i.e.
Ay # N ('source 3'). Such structural policy variable heterogeneity follows from (1) state vari-
able parameter heterogeneity (£;; # E;;), and (2) outcome-level type dependence and scale
dependence. It is detailed in Section 2.3. For example, agent A might have a higher saving
ratio or dissimilar portfolio allocation compared to agent B.

2.2 State variable parameter heterogeneity ('source 2’)

Section 2.1 allowed for structural heterogeneity in the parameters underlying agents’ state
variable processes: E;; # E;;. Such structural heterogeneity in state variable parameters
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is said to follow from an additive specification containing a type-dependent term and scale-
dependent term. Formally:
zip = &+ & [wir, Si4l )

’

where any parameter z;; € E;; of agent i at time f equals the sum of a scale-dependent
term ¢* [w;y, S; 4] and a type-dependent term ¢f,. On the one hand, the scale-dependent term
9% [wiy, Sit] reflects the neutral parameter level conditional on agents’ initial wealth w;; and
state variables S; ;. To study wealth distribution outcomes, we are primarily interested in how
this neutral (scale-dependent) term relates to wealth w. On the other hand, the type-dependent
term €7, adds to the scale-dependent term a time-varying term that reflects time-varying unob-
served heterogeneity across agents. Low-type agents at ¢ display ¢, < 0, while for high-type
agents at t it holds that ¢, > 0. The type-dependent term obeys a discrete-state Markov chain
which I specify later. It introduces an additional source of randomness (‘risk” or “stochasticity”)
into the model environment.

As hinted on earlier, Equation 5 implies that agents may operate in unequal playing fields: as
a result of state variable parameter heterogeneity, some agents’ state variable processes will
be inherently more favorable to wealth accumulation than those of others. For example, the
equity return r¢ of an agent A might be drawn from a distribution that has a higher expected
value or lower expected standard deviation than those of an agent B. Such setting may relate
to scale dependence: perhaps agent A is wealthier than agent B and therefore has access to
more sophisticated investment funds or trading strategies (a scale dependence). It could also
reflect type dependence, however: agent A might have superior investment skills compared
to agent B. In any case, ceteris paribus, agent A operates in a setting that is inherently more
favorable to wealth accumulation than the operating world of agent B.

2.3 Policy variables heterogeneity ('source 3")

Also the level of a policy variable v;; € A;; of agent i at t is driven by an interplay between a
type-dependent and scale-dependent term. Algebraically:

vip = €5, + f° [wir, Sy

Eit] (6)

where f° [wilt, Sit ] Ei,t] denotes the scale-dependent term and ¢!, the type-dependent term. On
the one hand, the scale-dependent term 7 [w;, S;

Ei | reflects the neutral policy conditional
on agents’ initial wealth w and state variables S;;. The function f° may differ across agents
i due to heterogeneity in agents’ state variable parameters € Z. In the absence of such state
variable parameter heterogeneity (Z; = &; Vi, ), agents face the same scale-dependent func-
tion . Agent heterogeneity in the scale-dependent term then reflects behavioral responses to
heterogeneity in their endowment variable {w;;, S;;}. On the other hand, the type-dependent
term €7, adds to the scale-dependent levels a time-varying shock. This type-dependent term
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captures unobserved heterogeneity across agents. Such unobserved heterogeneity can relate
to preferences, geographic effects or any other variable not included in {w;;,S;;}. Low- and
high-type agents respectively display €7, < 0 and > 0. The type-dependent term follows a
discrete-state Markov chain that I specify later. €7, introduces an additional source of random-
ness (‘risk” or “stochasticity’) source into the model.

Implications & literature comparison As noted, Equation 6 implies that scale-dependent
functions f° are identical across agents insofar as agents face the same state variable param-
eters (E; = &j). Consequently, I have implicitly assumed that f° is obtained by solving an
intertemporal optimization problem that is ex-ante identical across agents. Any preference

heterogeneity between agents is contained instead in the type-dependent term ¢7 .

The attribution of preference heterogeneity to the type-dependent term differs in a subtle way
from (implicit or explicit) definitions in the literature. In existing work, agents are heteroge-
neous in their discount factors (e.g. Krusell & Smith, 1998; Hubmer et al., 2021; Toda, 2019), in
their risk aversion (e.g. Azzalini et al., 2023; Fernandez-Villaverde & Levintal, 2024) or in their
preference for wealth (e.g. Michau et al., 2023). This implies that agents are assumed to solve
optimization problems that are ex-ante different, leading to a heterogeneous scale-dependent
function: f7 # fi in Equation 6. There are two reasons why such formulation may be subop-
timal. First, imposing heterogeneity on preference parameters begs the question on why scale
dependence is not allowed for as well. That is, if discount factors, risk aversion or preference
for wealth parameters can be structurally different across agents, why can they not also scale
with wealth (or other state variables)? Such scale dependence in preference parameters would
render most of the commonly used optimization problems intractable, however. Second, the
choice of the preference parameter to be made heterogeneous is non-trivial: for example, while
discount factor heterogeneity has similar effects across all wealth levels, risk aversion hetero-
geneity does not. Despite the non-triviality of the parameter choice, existing studies do not
explicitly motivate their choice based on empirical data.

The framework from Equation 6 therefore offers a key advantage: it embeds all types of un-
observed policy variable heterogeneity across agents without making explicit its underlying
source. That is, the heterogeneity in the type-dependent term ¢, in Equation 6 could reflect
the complex interplay between different heterogeneous preference parameters (discount fac-
tors, risk aversion, preference for wealth), but equally heterogeneity in any other variable not
present in the model (geographic effects, keeping up with the Jones’s dynamics). In addition,
the additive scaling of the scale-dependent component with a type-dependent term makes the
type-scale dependent framework very straightforward to work with numerically.

Rational and naive expectations In Equation 6, agents are assumed to have rational expecta-
tions on their state variables € S, but naive expectations on their state variable parameters € E.
Specifically, an agent chooses its scale-dependent term f” [wilt, Sit Ei,t] under perfect knowl-
edge of its state variable processes and the uncertainty therein. However, the agent naively
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assumes that its current state variable parameters are also its future ones (Z;; = &;; with
s € [t+1,..]). This implies that the agent might underestimate the benefits (costs) of wealth
accumulation (decumulation): it does not take into account the possibility that a higher (lower)
wealth stock generates conditions more (less) favorable to wealth accumulation whenever
there exists scale dependence with wealth in E. It also means that the agent does not incorpo-
rate the possibility that its type-dependent term may be time-variant. The naive expectations
on parameters € E is a necessary assumption to come up with a solution to f° [wi,t, Sit Ei,t]

under common preference specifications, as detailed later.

2.4 Scale dependence and type dependence

The previous subsections posited that agents’ state variable parameters and policy variables
are determined by the interplay between a type-dependent and scale-dependent term. In this
subsection, I provide a formal definition for (the existence of) scale dependence and type de-
pendence. For scale dependence:

z € T exhibits scale dependence <= ¢*[w;;, Siy| £ b (7)

Eit] #b (8)

v € A exhibits scale dependence <= fY[w;y, Siy

which implies there exists scale dependence in a parameter z € = or in a policy variable v € A
whenever the respective neutral functions g% or f° are non-constant (i.e. different from some
constant b). Instead, there is said to be type dependence in parameter z € E or policy variable
v € A whenever ¢ or €' are different from zero for at least one agent i. Formally:

z € E exhibits type dependence <= Ji,t: &, #0 )
v € A exhibits type dependence <=  Ji,t: &, #0 (10)

Figure 1 provides a graphic illustration of type dependence and scale dependence for the state
variable parameters. Figure 2 does the same for the policy variables.

Feedback effects The source of structural agent heterogeneity (type versus scale dependence)
critically determines the presence of feedback effects. On the one hand, in a purely type-
dependent world (¢* = a and ¢g° = b), agents’ parameters or policy variables are ex-ante
unrelated to their positions in the wealth distribution (no feedback effects). These parameters
and variables may be related ex-post, however: if the type-dependent term is persistent, high-
type agents are likely to accumulate more wealth compared to low-type agents if the type
is favorable to wealth accumulation. On the other hand, in a purely scale-dependent world
(¢5, = Oand €7, = O for all agents), agents’ state variable parameters or policy variables are ex-
ante related to their position in the wealth distribution: agents with higher wealth have more
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Figure 1: Parameter-level type dependence and scale dependence: a graphic illustration.
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assumed to have identical state variables S4 = Sp = Sc. The solid line shows the scale-dependent function
g*. 1 distinguish between three cases. First, in the general case, the parameter z displays both type dependence
and scale dependence. On the one hand, for a given w, there exist neutral-type (A,C) and high-type (B) agents
(type dependence). On the other hand, the scale-dependent function g* scales with wealth (scale dependence).
Second, in the type-dependent world, there again exists type dependence (agent A,C versus agent B), but no scale
dependence: the function g* is constant at 0.06. Third, in the scale-dependent world, there is no type dependence:
¢* = 0 for agents A, B and C. There is scale dependence, however: the function g* rises in wealth w.

Figure 2: Outcome-level type dependence and scale dependence: a graphic illustration.
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Note: this figure compares three outcome-level type versus scale dependence settings. Agents A, B and C are
assumed to have identical state variables Sy = Sp = Sc. The solid line shows the scale-dependent function f?,
the neutral policy function obtained by solving an optimization problem. I distinguish between three cases. First,
in the general case, policy variable v displays both type dependence and scale dependence. On the one hand, for
a given w, there exists neutral-type (A,C) and high-type (B) agents (type dependence). On the other hand, the
scale-dependent function f7 scales with wealth (scale dependence). Second, in the type-dependent world, there
again exists type dependence (agent A,C versus agent B), but no scale dependence: the function f is constant at
0.50. Third, in the scale-dependent world, there is no type dependence: £’ = 0 for agents A, B and C. There is scale
dependence, however: the function g* rises in wealth w.
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favorable? state variable parameters or policy variables. As a result, obtaining higher wealth
levels generates conditions that are more favorable to wealth accumulation (feedback effects).

2.5 Theoretical scale and type dependence moments

Section 2.4 defined (the existence of) scale dependence and type dependence in state variable
parameters and policy variables. In this subsection, I introduce two summary metrics that
provide information on the degree of scale dependence and type dependence. These moments
will prove useful to analyze the impact of scale dependence versus type dependence on sta-
tionary model outcomes.

Scale dependence ¢*(wj;, Sit) and f”(w;;, Si¢) are the scale-dependent functions of a state
variable parameter z € E and policy variable v € A respectively. In what follows, I define the
spread and curvature of scale dependence for a generalized function /, which reflects either
the function g or the function f°.

First, define the minimum and maximum of the scale-dependent function #(w;¢, S; ;) over the
wealth support as:

hmin(si,t) = r{‘ui{\h(wi,hsi,t) (11)
hmax(si,t) = n;lvatXh(wi,tr Si,t) (12)

which allows to define the the spread of the scale dependence as the difference between the
maximum and minimum of the scale-dependent function h:

A(s)(sit) = hmax(Si,t) - hmin(si,t> (13)

’

Second, let us define a normalized mapping function /1 over the wealth support. That is, alge-
braically:

~ h(wit,Sit) - hmin(sit)
h(w;y, Siy) = o ;
( it l,t) I’lmax(si,t) — hmin(si,t)

€1[0,1] (14)

2In principle, it is also possible that the relationship is negative: higher wealth creates more unfavorable condi-
tions. I discuss the empirical evidence for state variable parameter heterogeneity and policy variable heterogeneity
in Section 3 of the paper.
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Figure 3: Theoretical scale dependence moments — spread AG) and curvature C of a (nor-
malized) scale-dependent function /.
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Note: this figures illustrates the theoretical scale dependence properties. The x-axis shows the normalized wealth
support € [0,1]. The y-axis represents the output of the normalized scale-dependent function /. The left panel plots

I across a grid of scale dependence spreads A®) under the assumption that the scale dependence curvature equals
zero: C = 0. The right panel displays i over a grid of scale dependence curvatures C when the scale dependence
spread is fixed at A®) = 1.

which allows to define the area A (by integrating over the /1) and the scale dependence curva-
ture index C(S;;):

1 ~
A(Siy) = /O i (w, Siy) du (15)
C(Sis) =1 — 2A(Sis) (16)

where w(,) is the uth—quantile of the wealth distribution. The scale dependence curvature
equals zero (C = 0) whenever the normalized scale-dependent function # is linear. The index
will be smaller than zero (C < 0) or larger than zero (C > 0) when the normalized function is
respectively concave and convex over the wealth support. Figure 3 visualizes the spread and
curvature of a scale-dependent function h.

Type dependence The state variable parameter and policy variable type-dependent terms
were defined as ¢}, and €7, respectively. These terms are assumed to follow some discrete-state
Markov chain. I next provide generalized definitions for the spread and persistence of the type
dependence, again dropping the z and v superscripts.

Let ¢;; take on n discrete values {¢1,...,€,}. Moreover, let 7 = (7y,...,7,) constitute the
stationary distribution of the discrete-state Markov chain, and let I'lys, .. ., Il,, denote its tran-
sition matrix. This allows to define the spread and persistence of the type-dependent term as
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respectively:

2
n n

AVE(S) = Y m <8k -Y 7Tj€j> (17)
=1 =

0°(Sip) = Y m ik (18)
=1

where the spread denotes the unconditional variance of the type-dependent shock values:
AME(S; ) = Var(e). The persistence represents the expected probability of staying in the
same Markov discrete state. It is computed by averaging over the diagonals of the transition
matrix I1.

3 Towards a workable model

In this Section, I specify the generalized framework from Section 2. I start by introducing a
structure on the state variable processes. In doing so, I provide an extensive literature overview
of the empirical evidence on state variable parameter heterogeneity across the wealth (rank)
distribution, discuss the calibration of the state variable process parameters and distinguish
between an equal playing field and unequal playing field setting. Thereafter, I summarize the
empirical evidence on policy variable heterogeneity across the wealth (rank) distribution. This
provides context to the modeling choices made in the present paper. Last, I define the wealth
inequality and wealth mobility metrics of interest.

3.1 State variable processes

3.1.1 Labor income

The labor income process is specified as follows. I assume that the logarithm of labor income
follows an AR(1)-process with parameters (oY, o¥):

Pigt1 =P’ pit + 0V €p)is (19)

where ¢, ~ N(0,1). I additionally assume that top 10% labor income is spread out according
to a Pareto distribution specified by a scale parameter x. Formally:

exp(pis+1) Fpiti1 <090
Fpitr1 — 090y ~1/x
T)

Yigr1 = (20)

wWop (1 — Fp/i,t+1 > 0.90

which is similar to Hubmer et al. (2021) and Gaillard & Wangner (2023). The only difference
is that I do not include a transitory component in labor income. The labor income process
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in Equations 19 and 20 is sufficiently rich to capture (1) top labor income shares, and (2) the
degree of long-run labor income mobility. The latter is particularly crucial given the purpose of
this paper to construct a heterogeneous agent model able to generate realistic wealth mobility
dynamics.

The assumption of exogenous labor income implies that labor income is unrelated to wealth,
among other factors. As a result, the assumption excludes a negative relationship between
wealth and hours worked, which is one of the core predictions of incomplete markets mod-
els with uninsurable wage risk. Such negative relationship would also be consistent with an
empirical literature documenting a negative impact of (unexpected) transfers on labor supply
(e.g. Cesarini et al., 2017). However, recent empirical evidence on the joint hours worked and
wealth distributions (Ferraro & Valaitis, 2022) suggests that hours worked may be roughly flat
across the wealth rank distribution. Therefore, in line with other heterogeneous agent mod-
els of the U.S. wealth distribution (e.g. Fernandez-Villaverde & Levintal, 2024; Hubmer et al.,
2021; Xavier, 2021), I assume an exogenous labor income process for simplicity.

Calibration The calibration of the labor income process can be described in two steps. First,
I abstract from structural heterogeneity in labor income parameters: agents have identical pa-
rameters p¥, 0¥ and k. Although a standard assumption in the heterogeneous agent literature,
this represents a simplification: there could exist type dependence in ¢¥ as a result of occupa-
tional choices, or scale dependence insofar remuneration packages become more performance-
based at the top. Second, the labor income parameters are calibrated both externally and in-
ternally. On the one hand, I externally calibrate ¢¥ = 0.20 for all agents 7, which is taken from
Heathcote et al. (2010). On the other hand, I internally calibrate x and p? to simultaneously
match the top 10% labor income share and long-run labor income mobility. The top 10% labor
income share is set at 41% based on data from Gould & Kandra (2022) for 2021. Long-run labor
income mobility is computed as the rank-rank coefficient over a thirty-year time horizon and
set at 0.40 based on Mazumder (2016). Applying this procedure generates calibration values
of x = 1.71 and p¥ = 0.9717. The latter is very close to value of 0.97 obtained by Heathcote et
al. (2010). Appendix A visualizes the calibrated labor income process.

3.1.2 Asset returns

Before discussing the asset return processes and their calibration, I make two remarks. First,
the calibration of these processes is aided by a complementary paper that quantifies return het-
erogeneity across the wealth (rank) distribution using a 2001-2021 household-level data sample
from the Panel Study of Income Dynamics (PSID) and a sample from the Survey of Consumer
Finances (SCF) (Van Langenhove, 2025c). Second, the labor income process in Equations 19
and 20 implies the absence of aggregate income growth in the stationary state. To account for
this zero growth stationary model state, I lower the equity and housing returns observed in
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empirical data by the average labor income growth observed between 2001 and 2021. This
growth rate equals 2.8% on an annualized basis based on the PSID-sample.

Equity and housing returns Equity returns r¢, and housing returns r, follow a stochastic
process with both aggregate and idiosyncratic risk:

i =i o7+ ‘75': sft (21)

= ply+ oMt ol el 22)
where 77¢ and 7' denote aggregate equity and housing risk, while sft and sfi represent idiosyn-
cratic equity and housing risk. All shocks are i.i.d.: & ~ N(0,1). The o-parameters in Equation
21 and 22 reflect the standard deviations of the respective aggregate and idiosyncratic shocks.
Aggregate risk is identical for all agents i and captures economy-wide equity and housing
market fluctuations. Conversely, idiosyncratic equity risk results from agent heterogeneity in
equity portfolios. Idiosyncratic housing risk reflects property-specific risk and geographic risk
(local housing market fluctuations). I assume that all four shock processes are independent
across time and agents. In particular:

Elnie,] =0 Vit (23)
E[n)e,] =0 Vit (24)
E[pint] =0 Vit (25)
E[el,¢],] =0 Vit (26)

Calibration In what follows, I discuss the aggregate risk calibration for equity and housing
returns jointly. I then provide an overview of the empirical evidence on state variable param-
eter heterogeneity across the wealth (rank) distribution, and use this to calibrate the expected
return and idiosyncratic risk parameters. I introduce the distinction between an equal playing
field and unequal playing field setting.

Aggregate risk standard deviations ¢** and ¢"* are calibrated to match the standard deviation
of aggregate equity returns and aggregate housing returns. These are taken from the macro-
financial database of Jorda et al. (2019) over the 1960-2019 period. I obtain calibration values
of ¢* = 0.17 and ¢™* = 0.08. This implies that aggregate housing market fluctuations are
less volatile (in the data and in the model) than aggregate equity market ones. The calibration
of idiosyncratic housing and equity risk discussed below takes as given these aggregate risk
standard deviations.

For housing returns, there exists little empirical evidence on structural heterogeneity across
the wealth (rank) distribution: housing returns corrected for cost of debt are found to be stable
(Van Langenhove, 2025c) or moderately declining (Snudden, 2025) with wealth (ranks) in the
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United States based on data from the PSID. An exception to this is Xavier (2021), who does es-
tablish a positive relationship between housing returns and wealth (ranks) using data from the
Survey of Consumer Finances (SCF). The positive relationship becomes clear-cut only from the
97th wealth percentile onwards, however. For the Scandinavian countries, a stable relationship
between housing returns and wealth is established for Norway (Fagereng et al., 2020) and for
Sweden (Bach et al., 2020).

As the empirical evidence points towards the absence of a clear relationship between housing
returns and wealth (ranks), I do not allow for structural heterogeneity in housing returns: ‘uh
and ¢’ are identical Vi, t. On the one hand, I calibrate the expected housing return " to the
median housing return observed across all households in the PSID-sample of Van Langenhove
(2025¢): " = 0.025. On the other hand, I calibrate idiosyncratic housing risk ¢’/ to minimize
the distance between the housing return process outcomes in Equation 22 to the standard de-
viation, first quartile and third quartile of empirical housing observed in Van Langenhove
(2025¢). This procedure takes the aggregate housing risk calibration as given and generates
o™ = 0.11. The calibrated housing return process is visualized in Appendix A.

For equity returns, there is no consensus on structural heterogeneity across the wealth (rank)
distribution. For the United States, Van Langenhove (2025c) establishes a positive relationship
between equity returns and wealth (ranks), and a negative one between equity return volatility
and wealth (ranks) using PSID-data. Xavier (2021) demonstrates that equity returns relate
positively to wealth using the SCE, although the relationship is rather weak. On the contrary,
Bach et al. (2020) do not find higher risk-adjusted equity returns for the wealthier based on
U.S. foundation data. Snudden (2025) finds instead that equity returns are relatively stable
across the wealth (rank) distribution and more volatile at the top based on a PSID-sample.
Finally, Balloch & Richers (2023) show that equity returns relate negatively to wealth based on
a proprietary database of U.S. portfolios. For the Scandinavian countries, Fagereng et al. (2020)
establish a positive relationship between equity returns and wealth for Norway, which they
attribute to a combination of scale and type dependence. Bach et al. (2020) find no evidence
that returns and wealth are related for Sweden.

To incorporate the possibility of a positive link between equity returns and wealth (ranks), I
distinguish between two equity return parameter settings. In a first setting ("equal playing
tield’), I ignore the structural heterogeneity and calibrate ;1 = 0.041 for all agents to match the
median equity return observed in Van Langenhove (2025¢). Furthermore, I calibrate ¢* = 0.27
to minimize the unweighted distance to the standard deviation, first quartile and third quar-
tile of empirical equity returns (from Van Langenhove, 2025¢c). This procedure takes as given
the aggregate equity risk calibration. The calibrated equity return process is visualized in
Appendix A. In a second scenario ("unequal playing field’), I do allow for structural hetero-
geneity and use the same matching procedure for yu per wealth decile d (based on data from
Van Langenhove, 2025c). This procedure assumes that the structural heterogeneity in the ex-
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pected equity return relates entirely to scale dependence. It is visualized in Figure 4, panel a.
Idiosyncratic equity risk 0" is maintained homogeneous across all agents i and equals 0.27.

Business-specific and riskless returns Business-specific returns r’

two principles. First, I presume that business-specific returns are driven entirely by idiosyn-
cratic risk. This is in line with empirical evidence for Sweden: Bach et al. (2020) argue that
idiosyncratic risk makes up 74% to 79% of total business-specific return risk. Second, rather
than imposing a specific stochastic process, I assume that the rf?, ; realized by an agent i at time
period t is randomly drawn from the PSID-sample of business-specific returns computed in

are modeled according to

Van Langenhove (2025c). Such approach has the advantage of exactly matching high-order
empirical moments. Given the complexity of the true business-specific return distribution,
such higher-order matching cannot be accomplished when imposing a specific stochastic pro-
cess. For future reference, I denote the business-return sample from Van Langenhove (2025c¢)
as I'. Finally, the riskless return rf is deterministic.

Calibration No consensus exists on the relationship between business return moments and
wealth (ranks). For the United States, Van Langenhove (2025c) finds that business returns are
higher and less volatile for wealthier entrepreneurs using data from the PSID. This is in line
with empirical evidence from both Xavier (2021) (using SCF-data) and Balloch & Richers (2023)
(using a proprietary database of U.S. portfolios). The latter study in particular finds that the
very top wealthiest face significantly higher Sharpe ratios on business returns as these agents
hold more diversified business portfolios. In contrast, Bricker et al. (2021) and Snudder (2024)
find that business returns decline with wealth (ranks) using the SCF and PSID respectively.
For Norway, Fagereng et al. (2021) establish a strong positive relationship between business
returns and wealth (ranks), while Bach et al. (2020) do not obtain a clear link for Sweden.

To incorporate the possibility of structural heterogeneity in business-specific returns, I again
distinguish between two settings. In a first setting ("equal playing field"), I pick random draws
from the total business return sample I'. The corresponding business return process is visual-
ized in Appendix A. The median business return in this sample equals 14%, with a standard
deviation of 0.95. In a second setting ("“unequal playing field’), I allow for business returns
to relate positively to wealth (ranks). I therefore create a separate business return sample per
wealth decile d, denoted as I';. For higher wealth deciles, expected business returns are higher,
and their volatility is slightly lower. This procedure assumes that the observed business return
heterogeneity follows purely from scale dependence. Figure 4, panel b provides a visualiza-
tion.

Finally, the empirical literature suggests a positive relationship between the riskless return and
wealth ranks. For the United States, Balloch & Richers (2023), Snudder (2024), Van Langenhove
(2025¢) and Xavier (2021) point to higher riskless returns for the wealthy. Moreover, Fagereng
et al. (2020) establishes a positive relationship for Norway. However, across all papers, the
magnitude of the effects is quite limited and only apply to the very top wealthiest. Given the
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Figure 4: Equity and business returns across the wealth rank distribution in the equal play-
ing field (dotted line) and unequal playing field (full line) settings.

(a) Equity return. (b) Business return.

110 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 110 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
Wealth Decile Wealth Decile

Note: this figure plots the equity return and (median) business return across wealth deciles d in the equal playing
field (dotted line) and unequal playing field setting (full line). The median business return is computed as the
median return in the sample I'; for the respective wealth decile d. Both return schedules are taken from Van Lan-
genhove (2025¢). The empirical returns are corrected for the zero growth stationary state of the models discussed
in this paper.

focus on the broader top 10% wealthiest in this paper, I abstract from structural heterogeneity
in riskless asset returns: agents are assumed to have an identical riskless return, which is
calibrated to / = —0.028.

Taxation The taxes T;; paid by an agent i at ¢t are assumed to be deterministic. They are
computed using the NBER TAXSIM simulator program, version v35. I apply the following
assumptions to this program.

For entrepreneurs, budget constraint Equation 2 shows that their total receipts come from
their business and from riskless asset holdings. To compute taxes using the NBER TAXSIM
program, these receipts need to be separated into labor income, capital income and capital
gains. I assume that total income (labor income and capital income) equals the median re-
turn in the A-sample (in an equal playing field setting) or the median return in the A;-sample
corresponding to entrepreneurs” wealth decile d (in an unequal playing field setting) multi-
plied by entrepreneurs’ previous-period wealth. I attribute 60% of this total income to labor
income, and 40% to capital income. Capital gains are then set equal to the residual between
entrepreneurs’ receipts and total income.

For households, labor income is provided by Equations 19 and 20. Consequently, only capital
income and capital gains need to be inferred. I apply a similar strategy as for entrepreneurs: I
assume that capital income equals the expected wealth return (equal playing field setting) or
the expected wealth return corresponding to a household’s wealth decile d (unequal playing
field setting) multiplied by the household’s previous-period wealth. Capital gains are sub-
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sequently computed as the residual between a household’s actual return on wealth and its
capital income.

Furthermore, I make two additional assumptions that apply to both entrepreneurs and house-
holds. First, I suppose that 20% of an agent’s capital gains are realized at t, with the remainder
being unrealized. The key results of this paper are robust to alternative assumptions. Second,
the NBER tax simulator requires a number of additional household-level inputs. More pre-
cisely, I assume that all households consist of two individuals that are aged 40, married and
have no dependents. I leave their geographic state to be undefined, and set their filing year to
2021. Moreover, I abstract from social security income, transfer income and tax deductions. In
principle, this may bias wealth inequality outcomes upwards, although it is counteracted by
the absence of an unemployment state in the labor income process of Equations 19 and 20.

Two comments I finish this section with two comments. First, the return processes assume
that labor income risk is uncorrelated to return risk. For equity and housing:

]E[E(P)i,t 7] =0 ]E[E(p)i,t eg,et] =0 (27)

E[S(P)i,t ’7?] =0 ]E[E(p)i,t 5?;] =0 Vit (28)

which is a simplifying assumption: for instance, Cocco et al. (2005) find a positive correlation
between labor income shocks and housing returns, while Bagliono et al. (2022) obtain a pos-
itive correlation between labor income shocks and aggregate stock market shocks. However,
these correlations are in general small. Second, having specified the state variable processes, I
make explicit the set of state variable parameters &, which was introduced in Section 2:

Eip = {0, 0¥, &, p, uG, 0%, o, W, oM, oM, T, Ty, Y (29)

where pf denotes a vector of parameter values, and I' and I'; comprise vectors of returns. The
other elements of E are scalars. An overview of the state variable parameter calibration across
the equal playing field and unequal playing field settings is provided in Table 1.

3.2 Empirical evidence on policy variable heterogeneity

In Section 3.1, I summarized the empirical evidence on structural heterogeneity in asset re-
turns. In this subsection, I provide an overview of the evidence on the relationship between
policy variables € A and wealth (ranks), with a focus on the United States. In short, there
exists empirical evidence on saving ratio, risky asset participation, portfolio allocation and
entrepreneurship heterogeneity across the wealth (rank) distribution.

Saving ratios For the United States, Van Langenhove (2025b) demonstrates that saving rates
out of labor income and out of new resources rise with wealth (ranks), while saving rates out of
wealth and composite resources are relatively stable across the wealth (rank) distribution. He
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Table 1: Calibration of the state variable processes: equal playing field and unequal playing
field settings.

Variable ‘ Equal Field | Unequal Field Target

oY 0.9717 0.9717 Internal: Mazumber (2016)

oy 0.20 0.20 External: Heathcote et al. (2010)
K 1.71 1.71 Internal: Gould & Kandra (2022)
ue 0.041 decile-specific p; | External: Van Langenhove (2025¢)
ot 0.17 0.17 External: Jorda et al. (2019)
oo 0.27 0.27 Internal: Van Langenhove (2025¢)
ul 0.025 0.025 External: Van Langenhove (2025c¢)
oha 0.08 0.08 External: Jorda et al. (2019)
ol 0.11 0.11 Internal: Van Langenhove (2025¢)
r? fullT decile-specific I'; | External: Van Langenhove (2025c¢)
rf -0.028 -0.028 Van Langenhove (2025c)

Note: this table shows the calibration strategy for the state variable parameters € Z across the equal playing
field and unequal playing field settings. Some parameters are calibrated externally, while other parameters are
calibrated internally.

also finds that saving ratios 0 (as defined in Section 2.1) vary positively with wealth. For future
reference, let us label the empirical relationship between saving ratios  and wealth deciles d as
f?[d; ;). For the Scandinavian countries, Bach et al. (2018) and Fagereng et al. (2021) show that
saving rates out of wealth decline with wealth (ranks) for Sweden and Norway respectively.
Fagereng et al. (2021) additionally show that saving rates out of labor income rise with wealth
(ranks), which is the key result of their paper. These two studies do not compute saving ratios,
however.

Asset participation & allocation There are multiple papers studying risky asset participation
and portfolio allocation across the wealth (rank) distribution in the United States. Gaillard &
Wangner (2023) and Van Langenhove (2025¢) provide evidence using the PSID, while Cioffi
(2021) and Xavier (2021) do so based on the SCF. Both datasets generate similar findings.

On the one hand, housing participation " reaches levels above 80% already at the middle
part of the wealth distribution, and continues to rise gradually for wealthier households. Both
housing entry and exit rates are therefore relatively flat from the 50th wealth percentile on-
wards in the empirical data. For future reference, I denote these empirical relationships be-
tween housing entry and exit rates and wealth deciles d as f¥"* [d;,] and 7" [d; ] respectively.
Instead, the conditional housing portfolio share a” peaks in the middle of the wealth distri-
bution at around 80% and drops to around 40% for the top 10% wealthiest. This empirical
relationship is referenced as %' [d; ].
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On the other hand, equity participation 1° equals around 40%-50% in the middle part of the
wealth distribution, but rises strongly to around 90% for the top 10% wealthiest. As a result, eq-
uity entry rates rise with wealth (ranks), while equity exit rates are declining along the wealth
(rank) distribution. I label these empirical relationships as f** [d;] and f¥* [d;,] respectively.
On the contrary, the conditional equity portfolio share a¢ is overall relatively stable or only
slightly increasing across the wealth (rank) distribution. This empirical schedule is referenced
as f* [d;;] in the remainder of this paper. Taken together, the positive relationship between
equity portfolio allocation and wealth (ranks) mainly relates to the extensive margin. Similar
findings persist for the Nordic countries in for example Bach et al. (2020) and Fagereng et al.
(2020).

Entrepreneurship With respect to entrepreneurship across the wealth (rank) distribution, I
distinguish again between the extensive and intensive margin.

At the extensive margin, entrepreneurs (x = 1) are concentrated predominantly at the top
of the wealth distribution: the share of agents with business assets rises strongly across the
wealth (rank) distribution. This is demonstrated in for example Cagetti & De Nardi (2006),
and more recently by Van Langenhove (2025c) and Balloch & Richers (2023). It also holds in
Fagereng et al. (2020) for Norway. While the entrepreneurship rate is high for the top 10%
wealthiest — with estimates ranging between 35% and 50% — it is particularly high at the
tail: among the top 0.1% wealthiest and beyond, over 80% of agents are business owners.
Entrepreneurship entry rates are rising across the wealth (rank) distribution, while exit rates
are declining. I reference the empirical entry and exit rates schedules across wealth deciles
(from Van Langenhove, 2025¢) as f*™ [d; ] and fP"* [d; ] respectively.

At the intensive margin, the fraction of wealth that entrepreneurs have allocated to business
assets a? exceeds 50% for the bottom 50% wealthiest, but drops to close to 30% from the 60th
wealth percentile onwards (Van Langenhove, 2025c). It then remains more or less stable at
this level before rising again for the very top wealthiest households (top 0.1% and beyond).
The allocation of the non-business wealth of entrepreneurs follows a similar pattern as for
households: allocation to housing is dominant at the middle of the wealth distribution, but is
increasingly tilted towards equity for agents at the top of the wealth distribution.

3.3 Outcome metrics

The heterogeneous agent models in this paper jointly target wealth inequality and wealth mo-
bility for 2021. In what follows, I summarize the inequality and mobility metrics used, and
their empirical values for 2021.

For wealth inequality, I use bottom 50%, middle 50%-90% and top 10% wealth shares, as is
common in the heterogeneous agent literature. The empirical value in 2021 (or in neighboring
years) for the bottom 50%, middle 50%-90% and top 10% wealth shares varies across different
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data sources and methodologies: it depends on the unit of analysis (households, individuals,
tax units), underlying data (administrative tax data in Saez & Zucman (2016) and Smith et
al. (2023) versus survey data in Kuhn et al. (2020) and Kuhn & Rios-Rull (2025)), treatment
of Social Security (e.g. Catherine et al., 2020) and corrections for tail wealth. I take a top
10% share of 77%, middle 50%-90% share of 23% and bottom 50% share of 0%. These shares
were computed from the top-wealth corrected SCF for 2021 and are similar in magnitude with
administrative tax data estimates from Saez & Zucman (2016) and Smith et al. (2023).

For wealth mobility, I distinguish between short-run and long-run wealth mobility. I intro-
duce two types of outcome measures, in line with Van Langenhove (2025a). On the one hand,
as an overall wealth mobility metric, I compute rank-rank coefficients over a five-year win-
dow (short-run) and over a thirty-year window (long-run). These rank-rank coefficients are
computed by regressing the cross-section of wealth ranks at t 4+ 5 or t 4 30 on the cross-section
at t using OLS. The coefficients are denoted as 87" and . On the other hand, to investigate
non-linearities in wealth mobility dynamics, I report the fraction of steady wealthy and steady
poor agents, in line with Van Langenhove (2025a). These groups include respectively (1) agents
remaining in the top 10% wealth bracket, and (2) agents remaining in the bottom 20% wealth
bracket.

Getting from empirical wealth mobility data to short-run and long-run wealth mobility values
relevant to the stationary state of our model is non-trivial. The model considers agents that
are infinitely lived, so-called dynasties (see Section 2). In practice, agents have finite lifespans,
which introduces lifecycle effects into wealth accumulation dynamics. I therefore come up
with the following approximations. On the one hand, for short-run wealth mobility measures,
I compare individuals” within-cohort wealth ranks at ages 50-54 to their wealth ranks at ages
45-49 (intra-generational perspective). I focus on the 45-54 age range as (1) the within-cohort
wealth distribution approximates the overall wealth distribution well at these ages, and (2) a
realistic share of agents is still active on the labor market and as entrepreneur. This generates
a short-run rank-rank coefficient of % = 0.84 (Van Langenhove, 2025a). On the other hand,
for long-run measures, I compare the within-cohort wealth ranks of children at ages 50-54 to
those of their parents at the same age bracket. Given that the average parent age at childbirth
in the U.S. equaled 29.6 years over the period 2000-2021, this approximates wealth mobility
outcomes over a thirty-year time horizon. This procedure generates an empirical long-run
rank-rank coefficient B = 0.40%.

3Van Langenhove (2025a) uses a PSID-sample over the period 1969-2021. However, actual wealth data is avail-
able only from 1984 onwards. The author therefore approximates wealth data prior to 1984 using a machine-
learning (ML) model based on main housing values and rental payments. This proxy suffers from a downward
bias in estimating wealth mobility outcomes, however. A comparison of children and parent wealth ranks at ages
50-54 is available only based on proxy data. The reported " = 0.40 is obtained after applying the bias-correcting
procedure outlined in Van Langenhove (2025a).
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4 Theoretical insights on type and scale dependence

In this Section, I compare heterogeneous agent models through numerical simulations to make
three theoretical points. First, I demonstrate that type-dependent and scale-dependent worlds
can generate empirical data patterns that are largely indistinguishable. This makes it difficult
to infer the degree of type versus scale dependence from empirical data. Second, an existing lit-
erature has shown that the distinction between type and scale dependence matters for the op-
timality of wealth taxation (e.g. Gaillard & Wangner, 2023; Gerritsen et al., 2025). I add to these
studies by showing that it matters also for wealth mobility outcomes: even when generating
identical wealth inequality outcomes, type-dependent models predict higher wealth mobility
than scale-dependent ones. Third, I demonstrate that the relationship between wealth mobility
and the scale- and type-dependent parameters is characterized by non-linearities. Moreover,
the relationship between wealth inequality and wealth mobility is not unambiguously nega-
tive.

4.1 Preliminaries

Before making the three aforementioned points, I impose a number of simplifying assumptions
on the heterogeneous agent models used in this Section. The theoretical insights derived here
are robust to alternative model formulations. The simplifying assumptions are relaxed again
from Section 5 onwards. In addition, I impose a convenient discrete-state Markov chain on the
type-dependent terms.

Simplifying assumptions First, I take as given the state variable processes from Section 3
and depart from the equal playing field setting. In other words, there exists no structural
heterogeneity in equity and business returns. Second, I assume that all agents in the model
are households (x = 0 Vi, t). This is accomplished by setting the conditional entry probability
p; equal to zero and the conditional exit probability p;}’ to one Vi,t. Third, for the policy
variables, I impose that agents are heterogeneous only in their saving ratio . Heterogeneity
in the probability of risky asset participation and portfolio allocation is abstracted from. These
homogeneous variables are calibrated for all agents to their median values observed in a PSID-
sample of Van Langenhove (2025c)*. More precisely:

p[.] =015 Vit (30)
p°[..] =018 Vit (31)
] =022 Vit (32)

“In this simplified model, there are still various wealth inequality-inducing forces at play. On the one hand,
’source 1" is active: agents face heterogeneous realizations of their labor income and returns. On the other hand,
under “source 3’, structural saving ratio heterogeneity is allowed for: some agents have higher saving ratios com-
pared to others.
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and:

pe[..] =018 Vit (33)
plel.] =009 Vit (34)
Wl ] =062 Vit (35)

Type-dependent process In the generalized framework of the Section 2, I argued that the
type-dependent term follows some discrete-state Markov chain, which introduces an addi-
tional source of randomness ('risk’) into the model. To operationalize the model, I impose a
structure on the type-dependent Markov chain. Denote as n the number of discrete type-states,
labeled as (1, ..., n). The type-dependent transition matrix is given by:

P =]
=9 (1- p) exp(—dij) oy (36)
Yiriexp(— di)

where di]- = |i —jl i,j = 1,...,n denotes the distance between two states i and j and
p € [0,1] the persistence parameter (which reflects the mass on the diagonal). A larger p
implies stronger persistence: a more substantial mass is concentrated on the diagonals of the
transition matrix. This example specification for the type-dependent process is convenient
as the type dependence persistence (defined in Section 2.5) will equal exactly p: all diagonal
values in the transition matrix I'T are equal to p.

4.2 Insight1 — data patterns across type- and scale-dependent worlds

Under the simplified model setting described in Section 4.1, I compare the saving ratio data
that is produced across the wealth (rank) distribution for four types of models. The models
differ by their scale versus type dependence imposed on saving ratios 6. The simulation results
are subsequently used to highlight two implications.

Four models In a first model ("pure scale dependence’), there exists no type dependence in
saving ratios (¢! = 0 Vi, t). This model relies purely on scale dependence to generate saving
ratio heterogeneity across agents i. The scale-dependent function f? is set equal to the rela-
tionship that is observed between saving ratios and wealth deciles d in the empirical data (Van
Langenhove, 2025b): f?[..] = f?[d;;]. In the stationary model state, the median saving ratio
and its dispersion across the wealth (rank) distribution in the pure scale-dependent model are
displayed in panel (a) of Figure 5. While the relationship between saving ratios and wealth
(ranks) is imposed to match the empirical pattern by construction, there critically exists no
saving ratio heterogeneity within a wealth decile d: all agents within a decile display identical
saving ratios.
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In a second model ('low-persistent type dependence’), the purely scale-dependent model is
augmented with low-persistent type dependence in saving ratios. That is, the type-dependent
9 is imposed to take on normally-distributed states between —0.3 and 0.3 and its persis-
tence is set at a very low level: p = 0.10. The saving ratio patterns across the wealth (rank)
distribution in the stationary model state are displayed in panel (b) of Figure 5. Two observa-
tions stand out. On the one hand, saving ratio inequality is somewhat higher than in a purely
scale-dependent model: the median saving ratio is higher in top wealth deciles, and lower in

term ¢

middle wealth deciles. On the other hand, there exists significant dispersion around the me-
dian saving ratio within each wealth decile. This dispersion is at its highest in the middle of
the wealth distribution.

A third model (‘high-persistent type dependence’) instead departs from highly persistent type
dependence. Scale dependence is abstracted from: the scale-dependent saving ratio is a con-
stant (% = 0.60). The type-dependent term takes on normally-distributed states between —0.3
and 0.3, while the type-dependent persistence parameter is estimated to match the saving ra-
tio inequality observed in the data. This estimation exercise leads to p = 0.90. Agents with
persistently positive type-dependent terms (high-type agents) make it to the top of the wealth
distribution, whereas agents with persistently negative terms (low-type agents) drop down to
the bottom. Unlike in the purely scale-dependent model, there exists dispersion around the
median for each wealth decile due to the randomness in the type-dependent term (Figure 5,
panel c).

In a fourth model (‘mixture type and scale dependence’), I combine scale dependence and
type dependence. On the one hand, the scale-dependent function is imposed to be less steep
than the relationship observed in the empirical data: f?[...] = 0.70 f? [d;]. On the other hand,
type dependence persistence is again estimated to match empirical saving ratio inequality.
Considering that part the saving ratio heterogeneity is captured by scale dependence, this
generates a persistence parameter that is lower than in the third model: p = 0.70. There again
exists some dispersion around the median saving ratio for each wealth decile (Figure 5, panel
d) because of the presence of type dependence.

Two implications A comparison of these four simplified models yields two key implications.
First, looking at the median levels of a policy variable across the wealth (rank) distribution
in empirical data yields little information on the importance of type versus scale dependence
for that variable. Let us continue with the saving ratio example. On the one hand, saving
ratios might relate positively to wealth as a result of selection effects when type dependence is
strong and persistent: persistently high-type agents rise to the top of the wealth distribution,
while persistently low-type agents drop to the bottom. On the other hand, saving ratios might
relate positively to wealth (ranks) as a result of scale dependence: under many commonly used
preference structures, optimal saving ratios are a positive function agents” wealth.
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Figure 5: Saving ratio patterns (solid lines) across the wealth (rank) distribution in four

simplified heterogeneous agent models.

(a) Pure scale dependence.

(b) Low-persistent type dependence.

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 05
04 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0
1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Wealth Decile

(c) High-persistent type dependence.
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(d) Mixture type and scale dependence.
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Note: the solid line shows the median saving ratio by wealth decile in the simulated data, while the bars indicate
the inter-quartile range. The dotted line represents the imposed scale-dependent saving function f used in the
model. In panel (a), this function exactly matches the simulated saving ratios, since no type dependence is present.
In panels (b) through (d), type dependence is introduced, causing the simulated saving ratios (solid line) to deviate
from the imposed scale-dependent function (dotted line). The degree of divergence increases with the persistence
of type dependence. All models build on the simplified framework described in Section 4.1.
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Second, in theory, the dispersion observed in empirical data around the median saving ratios
within a wealth bracket yields information on the spread and persistence of type dependence.
For given type dependence persistence p, a higher type dependence spread A(*) generates more
substantial dispersion around the decile median (Appendix B, Figure 11). Conversely, for a
given type dependence spread A"), a higher persistence p creates lower dispersion around the
median saving ratio of bottom and top wealth deciles (Appendix B, Figure 12). However, in
practice, agents’ saving ratios also reflect optimal responses to agents’ state variables. More-
over, they interact with asset participation and portfolio allocation decisions. Consequently,
there exist several other sources of within-bracket saving ratio heterogeneity across agents
beyond mere type dependence. This renders an identification of the contribution of type de-
pendence to the dispersion of saving ratios observed in empirical data very tedious.

A proper data-driven estimation of the degree of type versus scale dependence in state variable
process parameters or policy variables would require a source of exogenous wealth variation.
Two obvious sources of such variation include unanticipated inter-generational transfer re-
ceipts or lottery winnings. However, such data is very hard to come by in sufficient sample
size. Despite the absence of exogenous sources of wealth variation, the literature has made
some data-driven attempts to disentangle type versus scale dependence. Hurst & Lusardi
(2004) find scale dependence in the probability of shifting into entrepreneurship, while Bach
et al. (2020) and Fagereng et al. (2020) quantify the type dependence in asset return process
parameters for Sweden and Norway. Each of these three papers uses a fixed effect regression
model. On the contrary, In Section 5 of the present paper, I introduce a novel, model-based
estimation strategy to quantify the degree of scale versus type dependence in agents’ saving
ratios and portfolio allocation.

4.3 Insight 2 — wealth mobility across type- and scale-dependent worlds

The previous subsection demonstrated that type versus scale-dependent models can generate
largely indistinguishable saving ratio patterns across the wealth (rank) distribution. It did not
show why the distinction between type and scale dependence is relevant, however. In this
subsection, I fill this gap: I show that a purely type-dependent and purely scale-dependent
model that generate identical wealth inequality moments display diverging wealth mobility
outcomes: the purely type-dependent model predicts higher wealth mobility than the purely
scale-dependent one. I demonstrate this under the simplified model assumptions outlined in
Section 4.1.

In a first model (M1, 'no saving ratio heterogeneity’), saving ratio inequality is shut down: the
saving ratio is for all agents set to the median level observed across all households in a PSID-
sample over the period 2001-2021. This leads to: 6;; = 0.56. In this model specification, all
agent heterogeneity therefore follows from state variable randomness (‘source 1’). Stationary
wealth inequality in this model is roughly identical to stationary labor income inequality: the
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Table 2: Wealth inequality, wealth mobility, and income inequality across three simplified
models.

M1 M2 M3

Wealth inequality
Bottom 50% 0.20 0.01 0.01
Middle 50-90% 041 035 0.36
Top 10% 0.39 0.63 0.63
Wealth mobility
Short-run 0.89 098 0.92
Long-run 042 084 057
Steady wealthy 0.07 0.09 0.08
Steady poor 0.15 020 0.16
Labor income inequality
Bottom 50% 017 017 0.17
Middle 50-90% 042 042 042
Top 10% 041 041 041

Note: this table displays the stationary wealth inequality and wealth mobility outcomes across three simplified
models (M1, M2, M3). Each of the three models departs from the simplified framework outlined in Section 4.1.
The models differ solely in the assumptions that they impose on saving ratios. More precisely, model M1 abstracts
from saving ratio heterogeneity. Model M2 relies purely on saving ratio scale dependence, which is set equal to
the relationship between saving ratios and wealth deciles in the empirical data. Model M3 replicates the same
stationary wealth inequality outcomes of M2 based on purely saving ratio type dependence. Critically, the type-
dependent model M3 produces higher wealth mobility than the scale-dependent one (lower rank-rank coefficients).

top 10% wealth share (at 0.39) is only slightly smaller than the top 10% labor income share (at
0.41) (Table 2, column 2). If taxation was absent, the top 10% wealth share would be exactly
equal to the top 10% labor income share. The highly simplified model M1 matches empirical
short-run and long-run wealth mobility moments relatively well: the short-run rank-rank co-
efficient equals 0.89 (compared to 0.84 in the data), while the long-run rank-rank coefficient
amounts to 0.42 (compared to 0.40 in the data).

In a second model (M2, ‘scale dependence’), saving ratio inequality is introduced through scale
dependence only: I impose the empirically observed relationship between saving ratios and
wealth (ranks) to the scale-dependent saving ratio function (f?[...] = f?[d;;]). This model is
identical to the purely scale-dependent model from Section 4.2. Wealth inequality gets closer to
its empirical counterpart: the top 10% wealth share in model M2 equals 0.63 (Table 2, column
3). Wealth mobility declines, especially in the long-run: the short-run rank-rank coefficient
rises to 0.98, while the long-run coefficient increases to 0.84. The decline in wealth mobility
holds both at the top and at the bottom. The relationship between saving ratios and wealth
(ranks) by definition matches the one observed in the data.
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In a third model (M3, 'type dependence’), saving ratio inequality is introduced through type
dependence only. Specifically, the scale-dependent saving ratio is assumed identical for all
agents: f? = 0.56. The type-dependent term state levels are discretized to their empirical
counterparts in a PSID-sample conditional on f? = 0.56, leading to A®)? = 0.16. I then esti-
mate the type-dependent persistence parameter p? to match the stationary wealth inequality
of model M2. This produces p = 0.91. Despite generating identical top wealth inequality,
the type-dependent model (M3) predicts higher wealth mobility than the scale-dependent one
(M2): the short-run rank-rank coefficient in M3 equals 0.92 (compared to 0.98 in M2), while the
long-run coefficient amounts to 0.57 (compared to 0.84 in M2) (Table 2, column 4). This higher
wealth mobility in type-dependent models holds both at the bottom and at the top.

In summary, type-dependent models generate higher stationary wealth mobility than scale-
dependent models when wealth inequality is identical. What explains this outcome? Type-
dependent models ultimately introduce an additional source of randomness into the model
economy. Let us take the top 10% wealth decile as an example. As long as p < 1, there exists
(in expectation) a group of high-type saving ratio households at the top that will experience
a negative shock to their type-dependent term. Conversely, there exists (in expectation) a set
of households below the top experiencing a positive shock to their type-dependent term. The
former group is likely to drop out of the top 10%, while the latter is expected to enter this
wealth bracket. This interplay generates higher wealth mobility in type-dependent models
compared to scale-dependent ones even when wealth inequality (and saving ratio inequality)
outcomes are indistinguishable.

4.4 Insight3 — non-linearities in inequality-mobility outcomes

The previous subsection underscored that type-dependent models generate higher wealth mo-
bility than scale-dependent models when replicating equivalent wealth inequality outcomes.
These simulations dealt with the existence of scale dependence and type dependence. On
the contrary, this subsection focuses on the degree of scale dependence and type dependence.
Specifically, I investigate how the theoretical properties of scale dependence and type depen-
dence affect stationary wealth inequality and wealth mobility outcomes. I derive the stationary
model state using numerical simulations under the simplified model assumptions outlined in
Section 4.1.

Scale dependence To analyze the effects of scale dependence curvature and spread, I assume
that the scale-dependent function f? is monotonically increasing in wealth deciles d and takes
on strictly positive output values. I also abstract from saving ratio type dependence for sim-
plicity (¢ = 0 Vi, t). Two findings persist.

First, a higher scale dependence curvature C? implies larger wealth inequality, regardless of
the scale dependence spread A(®)? (Figure 6, panel a). On the contrary, the relationship be-
tween C? and wealth mobility does depend on the scale dependence spread: only when A()?
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is sufficiently high will the relationship between the curvature and wealth mobility be neg-
ative. For low A®), there exists no clear-cut relationship (Figure 6, panel b). Furthermore,
for high A()?, the negative relationship between C? and overall wealth mobility conceals two
countervailing effects: wealth mobility at the top declines, while wealth mobility at the bottom
increases (Figure 6, panels c and d).

What explains these results? A higher C? implies a more convex scale-dependent function,
generating a larger mass of agents with low saving ratios. As a result, the fraction of agents
with wealth below the average wealth level increases, and a larger group of agents displays
wealth levels that are close to the borrowing constraint (at 0). These smaller absolute wealth
differences at the bottom produce higher relative wealth mobility in this part of the wealth
distribution. At the top, the inverse is true: a higher C? creates a small number of agents with
very high saving ratios. These agents accumulate a lot of wealth compared to the average
wealth level. This lowers wealth mobility at the top.

Second, an increase in the scale dependence spread AB)? widens the wealth distribution and
lowers its turnover: the stationary top 10% wealth share increases, as does the long-run rank-
rank coefficient (Figure 7, panels a and b). This holds for any value of the scale dependence
curvature C?. The declining wealth mobility holds at the bottom and at the top of the wealth
distribution. The wealth mobility effect at the bottom is substantially stronger for lower C?
(Figure 7, panels c and d).

What are the driving forces behind these findings? Intuitively, a wider spread A®)? implies
larger cross-sectional saving ratio inequality, which produces more substantial absolute wealth
differences across agents. These greater wealth differences generate lower wealth mobility.
However, at the bottom, a high C? weakens this effect: a larger mass of agents has saving
ratios close to zero, implying more limited absolute wealth differences across agents. This
leads to higher relative wealth mobility at the bottom.

Type dependence To investigate the effects of type-dependent persistence and spread, I as-
sume that the scale-dependent function f? is a constant at 0.60. As a result, there exists no
scale dependence. All saving ratio heterogeneity is generated by type dependence. Two find-
ings persist.

First, a higher type dependence persistence o’ leads to moderately higher wealth inequality
and lower wealth mobility, regardless of the type dependence spread A()? (Figure 8, panels a
and b). The declining turnover across the wealth (rank) distribution holds both at the bottom
and at the top (Figure 6, panels c and d). However, this relationship between p? and wealth
inequality and mobility outcomes becomes clear-cut only for higher p?. The tipping point for
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Figure 6: Scale dependence curvature and stationary wealth inequality and mobility mo-
ments across three spread values (for saving ratios 0).

(a) Top 10% wealth share. (b) Long-run B-coefficient.
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Note: this figure plots the stationary wealth inequality and wealth mobility outcome metrics (defined in Section
3.3) across several simplified heterogeneous agent models. The models depart from the simplified framework
outlined in Section 4.1 and additionally abstract from saving ratio type dependence. The models are simulated
across different {CG, A(S)e}—combinations. The scale dependence curvature CY-values are displayed on the x-axis,
and each line represents a scale dependence spread A(®)?-value.

175



Figure 7: Scale dependence spread and stationary wealth inequality and mobility moments
across three curvature values (for saving ratios ).

(a) Top 10% wealth share. (b) Long-run B-coefficient.
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Note: this figure plots the stationary wealth inequality and wealth mobility outcome metrics (defined in Section
3.3) across several simplified heterogeneous agent models. The models depart from the simplified framework
outlined in Section 4.1 and additionally abstract from saving ratio type dependence. The models are simulated
across different {A®)?, C?}-combinations. The scale dependence spread A*)?-values are displayed on the x-axis,
and each line represents a scale dependence curvature C?-value.
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Figure 8: Type dependence persistence and stationary wealth inequality and mobility mo-
ments across three spread values (for saving ratios 6).

(a) Top 10% wealth share. (b) Long-run B-coefficient.
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Note: this figure plots the stationary wealth inequality and wealth mobility outcome metrics (defined in Section
3.3) across several simplified heterogeneous agent models. The models depart from the simplified framework
outlined in Section 4.1 and additionally abstract from saving ratio scale dependence. The models are simulated

across different {p?, A(?}-combinations. The type dependence persistence p?-values are displayed on the x-axis,
and each line represents a type dependence spread A(Y?-value.
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Figure 9: Type dependence spread and stationary wealth inequality and mobility moments
across three persistence values (for saving ratios 6).

(a) Top 10% wealth share. (b) Long-run B-coefficient.
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Note: this figure plots the stationary wealth inequality and wealth mobility outcome metrics (defined in Section
3.3) across several simplified heterogeneous agent models. The models depart from the simplified framework
outlined in Section 4.1 and additionally abstract from saving ratio scale dependence. The models are simulated
across different {A()?, p?}-combinations. The type dependence spread A()?-values are displayed on the x-axis,
and each line represents a type dependence persistence p-value.
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0% is found at around 0.50 and 0.60, although the exact value interacts with the spread A(!)?: a
higher spread produces a lower tipping point for p%.

These results are straightforward to interpret intuitively: for higher p?, agents are expected
to remain of the same saving ratio type for longer consecutive time durations. As a result,
high-type agents accumulate more substantial wealth (and vice versa for low-type agents).
This generates a wider wealth distribution, and therefore greater absolute wealth differences
between agents. These larger absolute differences in turn cause relative wealth mobility to
decline, both at the bottom and at the top of the wealth distribution.

Second, a higher type dependence spread AP brings about moderately higher wealth inequal-
ity (Figure 9, panel a). Its impact on wealth mobility depends critically on the type dependence
persistence p?, however. For low persistence p?, a higher A()? produces higher wealth mobil-
ity outcomes. On the contrary, the inverse relationship holds for high persistence p%: a higher
A1 produces lower wealth mobility outcomes (Figure 9, panel b). Under both settings, wealth
mobility at the bottom and at the top move in the same direction (Figure 9, panels c and d).

What drives these findings? They relate back to the tipping points from Figure 6. On the one
hand, when p? takes on a value below the tipping point (at 0.50 — 0.60), the persistence in
the type-dependent terms is insufficiently strong to consolidate agents’ positions in the wealth
distribution in the long-run. In other words, there exists strong mean-reverting behavior. An
increase in the spread A()? then raises wealth inequality, but lowers long-run wealth mobility.
On the other hand, when p? exceeds the tipping point, the inverse holds: the type-dependent
term contributes to the existence of persistence along the wealth (rank) distribution. A higher
AP reinforces this effect.

Two implications The results from Figures 6 to 9 yield two fundamental implications. First,
the relationship between stationary wealth mobility and the scale-dependent and type-dependent
model parameters is characterized by non-linearities. For example, a higher scale dependence
curvature C? produces lower wealth mobility only when the scale dependence spread A()?
obtains values close to one (‘example a’). Furthermore, the relationship between the type de-
pendence spread A(*)? and wealth mobility depends critically on type persistence p’: the rela-
tionship is negative for high p? and positive for low p? (‘example b’). Second, although there
exists a negative link between wealth inequality and wealth mobility under most parameter
settings, this is not by definition the case: in examples (a) and (b), higher C? and A()? generate
higher wealth inequality, but their effect on wealth mobility is not unambiguously negative.
Instead, it depends on the underlying scale-dependent and type-dependent parameter combi-
nations.

5In addition, the tipping point is model-dependent. Consequently, it may obtain different values in more so-
phisticated heterogeneous agent models, such as the one outlined in Section 5 of this paper.
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5 A model-based estimation of type and scale dependence

The generalized theoretical framework of Section 2 posits that structural heterogeneities in
state variable parameters ('source 2") and policy variables ("source 3’) result from the interplay
between type dependence and scale dependence. Section 4 showed that such distinction be-
tween type dependence and scale dependence is relevant: the mixture of scale dependence and
type dependence imposed on the model critically affects wealth mobility. A model that aims to
jointly match wealth inequality and mobility moments should therefore rely on a realistic de-
gree of type versus scale dependence. However, as underscored in Section 4, type-dependent
and scale-dependent worlds can generate highly similar outcome patterns in the empirical
data. This renders identification of the degree of type and scale dependence challenging.

In this Section, I proceed in three steps. First, I introduce a full-fledged Aiyagari-Bewley-
Huggett heterogeneous agent model where households have non-homothetic preferences and
entrepreneurs are modeled along the lines of Cagetti & De Nardi (2006). Second, I present a
novel estimation strategy that uses the heterogeneous agent model in combination with data
from the Panel Study of Income Dynamics (PSID) to estimate internally the scale-dependent
functions and type-dependent stochastic structure for household saving ratios and household
portfolio allocation. The innovation of this strategy lies in the linkage it creates between a the-
oretical scale-dependent function and its type-dependent structure, which is computed from
the empirical data. This association is shown to be critical in producing a stationary model
state that matches empirical wealth mobility outcomes. Third, I apply the estimation strategy
to models relying on equal and unequal playing field settings, and subsequently come up with
a baseline model that replicates well 2021 wealth inequality and wealth mobility for the United
States (which are untargeted model moments). This baseline model will be used in Section 6
to compute counterfactual wealth distributions.

5.1 A heterogeneous agent model

In Section 4, I have presented heterogeneous agent models that rested on highly simplified
assumptions. Instead, in what follows, I introduce a full-fledged heterogeneous agent model.

State variable processes The model uses the state variable processes and their estimation
outlined in Section 3 of the paper. Log labor income obeys an AR(1)-process augmented with a
Pareto distribution at the top (Equations 19 and 20). Equity and housing returns are normally
distributed and are determined by idiosyncratic and aggregate risk (Equations 21 and 22).
Business returns are taken from an empirical business return PSID-sample I' to guarantee a
match with higher-order return moments. Finally, the riskless return rf is deterministic, and
taxes are computed using the NBER tax simulator program. I allow for both state variable
parameter settings: agents may operate in an equal playing field (no structural heterogeneity
in state variable parameters) or in an unequal playing field (structural heterogeneity in equity
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and business returns via scale dependence) setting. The estimation of these processes follows
Table 1.

Policy variables households The scale-dependent saving ratio function f? for households
(x = 0) represents the optimal policy from solving an intertemporal utility maximization prob-
lem. That is, for households (x = 0):

00 19 19
0 oA = e Cit Wit
f (wiy, Si ’ Bit Ait) {g}f}igO]Et Zt:.B (1 pV: + 1 ’y“’) (37)
subject to the household budget constraint (Equation 1) and the state variable processes (Sec-
tion 3). Households display CRRA-utility over consumption in combination with a preference
for wealth (capitalist motive). In Equation 37, B denotes the discount factor, y¢ the risk aver-
sion regarding consumption, ¢“ the risk aversion with respect to wealth, and ¢ the house-
holds” preference for wealth parameter. All households i maximize the same intertemporal
maximization problem, as noted in Section 2.3. In addition, agents incorporate the uncertainty
in state variables € S (rational expectations), but take their state variable parameters € = as
given (naive expectations). I impose that § = 0.94, in line with for example Hubmer et al.
(2021). Furthermore, I suppose that v* = 0.25 and ¢ = 2, meaning that wealth is a luxury
good and preferences are non-homothetic (in line with e.g. Atkinson, 1971; De Nardi, 2004;
Michau et al., 2023). The preference for wealth parameter ¢ is estimated internally, as detailed
in Section 5.2. I do not impose any structure on type-dependent saving ratio terms yet as these
will be estimated from the data (also described in Section 5.2). The maximization problem in
Equation 37 is resolved numerically using the endogenous grid method (Carroll, 2006). Grids
were discretized using Rouwenhorst (1995).

The solution to the optimization problem in Equation 37 generates a scale-dependent saving
ratio function. It was obtained conditional on the household’s other policy variables € A.
However, in addition to saving ratios, households’ policy variable set also contains equity and
housing participation and allocation variables. In principle, it would be desirable to depart
from an optimization problem that yields a joint solution to all variables € A, rather than solely
the saving ratio 6 (as was assumed in Section 2.3). Unfortunately, such joint solution for saving
ratios, asset participation and asset allocation suffers from numerical instabilities and empirical
contradictions, even when using richer utility specifications (e.g. Epstein-Zin preferences).
Instead, I therefore impose simplifying behavioral assumptions on the risky asset participation
and portfolio allocation policy variables. I outline these assumptions in two steps.

First, I suppose that the scale-dependent (conditional) entry and exit probabilities for equity
and housing participation relate solely to wealth w and are equal to the relationship between
entry and exit probabilities and wealth deciles d observed in the empirical data (Van Langen-
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hove, 2025¢). That is:

e,e €,e €,e

FP7 (Wi, Sip | Big] = 77 [wig] = f77 [dig] (38)

FP win, Sip | Zig] = f77 [wig] = f7 [dig] (39)
and:

PP (i Sig | Ba] = f7 [wig] = F7* [dif] (40)

£ [wig, Sip | Eig] = f7 [wig) = 7P [di] (41)

In addition, for now, I posit the absence of type dependence in equity and housing entry and
exit probabilities:

e, =0 Vit (42)
el =0 Vit (43)
and:
h,e
el, =0 Vit (44)
& =0 Vit (45)

Second, equity and housing (conditional) portfolio shares are assumed to relate solely to wealth
levels w. Moreover, they are also imposed to match the relationship between these shares
and wealth deciles d in the empirical data (Van Langenhove, 2025c), but multiplied by scale-
dependent parameters k¢ and k". Algebraically:

F (w3, Sip | Big] = f [wid] = KF* [dig] (46)
£ Twin, Sip | ] = £ [wig) = K7 [dy] (47)

where k-parameters will be estimated internally, as outlined in Section 5.2. Moreover, I do not
impose a structure on type-dependent portfolio allocation terms yet: these will be estimated
from the data.

Policy variables entrepreneurs Determining the scale-dependent functions for the policy
variables (saving ratios # and business portfolio shares a’) of entrepreneurs (x = 1) through
the solution of an optimization problem is highly complicated. That is, for entrepreneurs,
the solution to Equation 37 yields an optimal saving ratio very close to one across all wealth
levels. This stems from high idiosyncratic business risk in combination with a precautionary
saving motive. While there exists empirical evidence that entrepreneurs save more for given
wealth levels in the United States (e.g. Van Langenhove, 2025b), their saving ratios still lay be-
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low one. Unfortunately, it is difficult to empirically investigate the exact relationship between
entrepreneurial saving ratios and wealth levels w as representative data for entrepreneurs is
available only at the top of the wealth (rank) distribution. I therefore impose the two simplify-
ing assumptions on the heterogeneous agent model.

First, I abstract from saving ratio heterogeneity for entrepreneurs: the scale-dependent saving
ratio term for entrepreneurs is equal to a constant §, while the type-dependent term is (for
now) set at zero across all entrepreneurs i. That is, for entrepreneurial agents (x = 1):

fe [wi,tr Sit ‘ Ei,t] =6 (48)
=0 Vit (49)

which is similar to e.g. Gomez & Gouin-Bonenfant (2024). Second, I make identical assump-
tions for the business portfolio share a’: business portfolio shares are homogeneous across all
entrepreneurs. Specifically, the scale-dependent business portfolio share equals a constant &,
while the type-dependent term is zero across all agents i. Algebraically:

f a? [wi,trsi,t ’ Ei,t] =g (50)
€ =0 Vit (51)

where I calibrate &’ to the median share of their portfolio that entrepreneurs allocate to busi-
ness or equity assets in the SCF-sample of Van Langenhove (2025c¢). This produces &’ = 0.55.

Agent type — entrepreneurship A final policy variable € A are the transition probabilities be-
tween households and entrepreneurs p*¢ and p*°. For now, I assume that the scale-dependent
entry and exit probabilities relate solely to wealth levels w and follow their empirical sched-
ule (Van Langenhove, 2025c). Moreover, I abstract from type dependence in these variables.
Algebraically:

F7 [wigs Sig | i) = F7 [wig] = F7° ] (52)
FP win, Sig | Big] = f77 [wid] = 7 [dig) (53)
el =0 Vit (54)
el =0 Vit (55)

which is similar to the assumptions imposed on household equity and housing participation
transitions.

However, both under the equal and unequal playing field settings from Section 3, the concen-
tration of entrepreneurs at the top significantly underestimates the concentration observed in
the empirical data. This holds even when imposing extreme entrepreneurial saving ratios 6°
close to one for all entrepreneurial agents. More precisely, the share of entrepreneurs among
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the top 10% wealthiest ranges between around 14% to 20% across different model specifica-
tions, compared to over 30% in the data. In response to this, one can think of two adaptations.
First, one could raise the business returns observed in the data A’ with a scalar b up to the point
where the spread of entrepreneurs across the wealth (rank) distribution in the stationary model
states matches its empirical counterparts. However, the premium over empirically observed
returns that such strategy requires is very large: it takes on values over 25%. While some
underestimation of empirical business returns is likely, it is unlikely to be this large. Second,
one can multiply the entrepreneurial entry (exit) rates across the wealth rank distribution by a
scalar a (1/a). This does generate a realistic spread of entrepreneurs over the wealth distribu-
tion, even for minimal changes. I therefore apply this method. The aggregate entrepreneurship
rate in the stationary model state (at 10%) now lies slightly above its empirical counterpart (9%
in Van Langenhove, 2025c). The excess entrepreneurs in the model are primarily concentrated
in the middle part of the wealth distribution. They therefore comprise entrepreneurs whose
businesses have not taken off yet or have become unsuccessful.

5.2 Estimation strategy

The construction of the model and external estimation exercise leaves a number of parameters
that need to be estimated internally within the model. First, for household saving ratios, the
preference for wealth parameter ¢ and structure behind the type-dependent term &’ require
estimation. Second, for household portfolio allocation, k* and k" need to be estimated, as do
the structures behind type-dependent terms &* and ¢, Third, for entrepreneurs, the homoge-
neous saving ratio §° requires estimation. In what follows, I estimate these three groups of free
model parameters to match a set of target variables. I leverage a panel dataset from the Panel
Study of Income Dynamics (PSID) to create an empirical link between scale-dependent func-
tions and type-dependent term structures. In the PSID-sample, I define households as agents
without business assets, and create a sample of households aged 25 to 64 that have at least
three observations for all state variables € S and policy variables € A over the lifecycle. I ex-
clude observations in years where a household reports to have received a lumpsum payment
or inter-generational transfer.

The estimation strategy is set up in three steps. Together, these steps link each scale-dependent
parameter (@, k%, k") with a type-dependent structure estimated from the data. First, I solve
the optimization problem in Equation 37 over a ¢-grid, obtaining a grid of candidate scale-
dependent functions f?. In addition, I compute candidate scale-dependent functions f* and
f «" across all values in an ke-grid and k"-grid. Second, for each of the candidate scale-dependent
functions, I compute the residuals e between the saving ratios and portfolio shares observed in

184



the PSID and the ones predicted by the candidate scale-dependent function. Algebraically:

t—ezt—fe[z Si] (56)
zt:“u £ Wit Sit] (57)
i—«xlt P [wig, 5] (58)

where Z refers to the value of a variable z observed in the PSID-sample. As a result, 6, &f-/t and
&;‘, ; represent the saving ratio and portfolio shares observed in the data. This second step has
generated a grid that links each candidate scale-dependent function to a corresponding sample
of residuals. Third, for each element in this grid, I discretize the residuals e over the agents in
the sample to obtain a discrete-state residual grid and a Markov transition matrix. Together,
the grid and transition matrix approximate the type-dependent structure for the respective
variable (6, a¢, a"). To conclude, our final grid links each candidate scale-dependent function
to corresponding type-dependent structure that is estimated from the empirical data.

Having created a grid also for the entrepreneurial saving ratio 8, I subsequently estimate the
free parameters (¢, k%, k" and §”) using a method of simulated moments (MSM) estimator. The
MSM estimation targets include (1) the saving ratio levels and dispersion across the wealth
(rank) distribution (Van Langenhove, 2025a), (2) the equity and housing portfolio share levels
and dispersion across the wealth (rank) distribution (Van Langenhove, 2025c¢), and (3) the ratio
of aggregate wealth held by entrepreneurs to total aggregate wealth, which equals 0.35 in a
PSID-sample. Let us denote the set of target variables as (). Algebraically, the MSM-estimator
minimizes:

(¢, K KA — . [ e khoab .12
¢, Kk, k' "} =arg min ) |z (¢, Kk, K", &) — 2, (59)
(p,k",kh,&h 2e0)

where I have denoted by z the model-generated target moments and as Z their empirical coun-
terparts.

How does this estimation strategy compare to the literature? First, existing heterogeneous
agent models depart from type dependence or scale dependence in parameters or policy vari-
ables without establishing a realistic, empirically-driven linkage between the two dependence
types (e.g. Fernandez-Villaverde & Levintal, 2024; Gaillard & Wangner, 2023; Xavier, 2021).
On the contrary, the estimation strategy in Equations 56-59 guarantees that a theoretical scale-
dependent function is related to a realistic, empirically-driven type-dependent structure. This
is critical in matching wealth mobility outcomes. Second, as argued in Section 4.2, there have
been multiple attempts to estimate type dependence versus scale dependence based on em-
pirical data using fixed effects models (e.g. Bach et al., 2020; Fagereng et al. 2020; Hurst &
Lusardi, 2004). In contrast, the estimation strategy in Equations 56-59 is model-based.
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5.3 Estimation results

In this subsection, I discuss stationary heterogeneous agent model outcomes using the external
and internal estimation from Sections 5.1 and 5.2. I distinguish between the equal and unequal
state variable parameter settings.

Under the equal playing field setting, applying the estimation procedure from Section 5.2
yields ¢ = 0.06, k¢ = 0.95, k" = 0.95, §” = 0.945. Furthermore, the estimated type-dependent
structures are characterized by their spread and persistence:

AD8=0019, p? =021, A =0037, p* =027, AV =007, p* =029

The stationary model outcome replicates 2021 U.S. wealth inequality and wealth mobility well,
although it underestimates the degree of wealth mobility (Table 3, column 2, ‘equal’). First,
the top 10% wealth share in the equal playing field setting model matches exactly the one
observed in the data (at 0.77). The model does overestimate the bottom 50% wealth share
(0.03) relative to the data (0.00). This stems from the absence of indebtedness in the model.
Second, both short-run and long-run wealth mobility in the model are somewhat lower than
in the data: the short-run rank-rank coefficient equals 0.89 in the model (compared to 0.84 in
the data), while the long-run rank-rank coefficients amounts to 0.48 (versus 0.40 in the data).
The underestimation of wealth mobility occurs primarily at the top.

Under the unequal playing field setting, I derive the stationary states for two models. On the
one hand, I keep the free parameter estimation from the equal playing field setting, but allow
for structural heterogeneity in equity and business returns (Table 3, column 3, ‘unequal 1°).
The top 10% wealth share now lays slightly higher, at 0.78. Wealth mobility remains roughly
identical to the equal setting. On the other hand, I re-estimate the free parameters (¢, k°, k",
6%) to the unequal setting. Part of the empirically observed saving ratio inequality follows
from structurally unequal equity returns across the wealth (rank) distribution. This lowers the
preference for wealth estimate to ¢ = 0.04. Similarly, the structural heterogeneity in business
returns across the wealth (rank) distribution generates a slightly lower entrepreneurial saving
ratio: 8% = 0.94. The other two internally estimated parameters take on the same values as
before: k* = 0.95 and k" = 0.95. Moreover, the estimated type-dependent structure is close to
identical to the equal setting. The stationary model yields similar results as the equal playing
field setting (Table 3, column 4, 'unequal 2’). This implies that also the unequal playing field
setting model underestimates empirical wealth mobility outcomes.

What explains the underestimation of wealth mobility in the stationary model state relative
to the empirical data? There are three candidate explanations, which relate to the simplifying
assumptions from Section 5.1. First,  have imposed that the structural heterogeneity in equity
and housing entry and exit rates relates entirely to scale dependence. In practice, there might
also exist type dependence in these variables. Introducing type dependence would increase
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Table 3: Stationary model outcomes across an equal playing field setting, two unequal play-
ing field settings, and a baseline model.

‘Data Equal Unequall Unequal2 Baseline

Wealth inequality
Bottom 50% 0.00 0.03 0.03 0.03 0.03
Middle 50-90% 023 021 0.20 0.21 0.18
Top 10% 077 0.76 0.78 0.77 0.79
Wealth mobility (short—run)
Short-run B 0.84  0.89 0.88 0.88 0.86
Steady wealthy 0.08  0.08 0.08 0.08 0.08
Steady poor 013 013 0.13 0.13 0.13
Wealth mobility (long—run)
Long-run j3 040 048 0.49 0.47 0.44
Steady wealthy 0.03 0.04 0.04 0.04 0.04
Steady poor 0.09  0.08 0.08 0.07 0.07

Note: this table shows the stationary wealth inequality and mobility outcomes across four heterogeneous agent
models (equal playing field setting, unequal playing field setting 1, unequal playing field setting 2, baseline model).
The models are detailed in the main text. The column "Data’ shows the wealth inequality and wealth mobility
outcomes in the empirical data, as outlined in Section 3.3. The models have been estimated using the external
estimation described in Section 5.1, and the internal estimation strategy from Section 5.2. The ‘unequal 1" model
relies on the same estimation values for the free parameters as the ‘equal’ model.

wealth mobility (as shown in Section 4.4). The same reasoning applies to the attribution of
household-entrepreneur transition probability heterogeneity to scale dependence-only. Sec-
ond, entrepreneurial saving ratios and business portfolio shares are assumed homogeneous
across agents. In practice, entrepreneurs might be structurally different, in part because of
type dependence in their saving ratios and portfolio allocation. Third, in Section 3, I have
imposed that the heterogeneity in equity and business returns across the wealth (rank) dis-
tribution stems entirely from scale dependence. Also here type dependence is likely to be
present: some agents may be structurally better equity investors or entrepreneurs than others.
In summary, introducing type dependence in these three policy variables and two state vari-
able parameters is likely to generate more turnover across the stationary wealth distribution. I
turn to this next.

5.4 A baseline model

Both equal and unequal playing field setting models replicate relatively well 2021 U.S. wealth
inequality, but underestimate U.S. wealth mobility outcomes by around seven to nine points
based on the long-run rank-rank coefficient. In what follows, I quantify the contribution of the
simplifying assumptions of (i) scale dependence-only in equity, housing and entrepreneurship
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entry and exit probabilities, (ii) homogeneous entrepreneurial saving ratios and portfolio allo-
cation, and (iii) scale dependence-only in expected equity and business returns to this result. I
then present a baseline model.

Such quantification exercise is complicated by the absence of an obvious way of linking candi-
date scale-dependent functions for these variables to an empirical type-dependent term struc-
ture. We therefore have to resort to an ad-hoc approach that is only partially data-driven. For
all variables in (i)-(iii), I introduce type dependence according to three principles. First, I im-
pose on these variables a type dependence spread A(*) that equals 20% of the total observed
variance in that underlying variable. This is in line with the (average) ratio of saving ratio type
dependence spread to the total saving ratio variance observed in models of Section 5.3. Sec-
ond, I set these variables’ type dependence persistence parameter p to 0.20. This corresponds
roughly to the saving ratio type dependence in the equal and unequal setting models. Third,
I multiply the scale-dependent functions that were imposed for variables (i)-(iii) in Section
5.1 by a variable-specific scalar k. Conditional on the ad-hoc type-dependent structure, these
scalars k are estimated to match the empirical values of the variables across the wealth (rank)
distribution (in the PSID). This approach generates identical free parameter estimates as in the
unequal playing field setting model. That is, it holds that: ¢ = 0.04, 8 = 0.94, k* = 0.95 and
k" = 0.95. The k-scalars of variables (i)-(iii) obtain values close to one. The type-dependent
summary metrics are also similar to the models of Section 5.3:

A8 = 0016, p? =021, A =0037, p* =027, A =007, p* =029

The wealth inequality and wealth mobility outcomes are displayed in Table 3, column 5 ('base-
line”). Two key findings persist. First, top wealth inequality is slightly higher compared to the
equal and unequal playing field models: the top 10% wealth share rises to 0.79 (compared to
0.77 in the empirical data). Second, short-run and long-run wealth mobility increase compared
to the models from Section 5.3: the short-run rank-rank coefficient drops to 0.86 (compared to
0.84 in the data), while the long-run rank-rank coefficients declines to 0.44 (compared to 0.40
in the data). Introducing type dependence in variables (i)-(iii) therefore brings wealth mobility
outcomes in the heterogeneous agent model closer to their empirical counterparts. However, a
gap of four points remains. In what follows, I label the model from Table 3, column 5 the "base-
line model’. I will use it as a starting point to compute counterfactual wealth distributions in
Section 6. Appendix C visualizes entrepreneurship, saving ratios, equity and housing partic-
ipation rates and equity and housing portfolio shares across the wealth (rank) distribution.
These variables match empirical data patterns well.
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6 Sources of U.S. wealth inequality & wealth mobility

The previous Section has estimated a heterogeneous agent model with structural heterogene-
ity in expected equity and business returns and structural heterogeneity in all policy variables
€ A. In this Section, I use the estimated baseline model to investigate the channels gener-
ating wealth inequality and wealth mobility. I do so by shutting down structural agent het-
erogeneities and computing counterfactual wealth distributions. I distinguish between three
types of channels: (1) labor income inequality and taxation, (2) saving ratio inequality, (3)
household asset allocation, asset participation and asset return channels.

6.1 Labor income inequality & taxation

In a first counterfactual exercise ("labor income inequality”), I shut down labor income inequal-
ity: all household agents have an identical labor income equal to the 2021 average (‘'model
MT’): yir = y:. The top 10% labor income share is equal to 0.10. The counterfactual wealth
distribution displays lower wealth inequality and significantly higher wealth mobility: the top
10% wealth share drops to 0.67 (from 0.79 in the baseline), while the long-run rank-rank coeffi-
cient declines to 0.12 (compared to 0.44 in the baseline) (Table 4, column M1). The strong rise in
wealth mobility holds at the bottom and at the top of the wealth distribution: both the fraction
of steady wealthy and steady poor decline relative to the baseline. The rise in wealth mobility
also appears in the short-run: the short-run rank-rank coefficient falls to 0.60 (compared to 0.86
in the baseline).

Hence, the baseline heterogeneous agent model predicts a strong, negative relationship be-
tween labor income inequality and wealth mobility, which is a novel result in the heteroge-
neous agent literature. Another difference between my findings and existing literature relates
to the impact of labor income inequality on wealth inequality. Existing work found labor in-
come inequality to be the main contributor to wealth inequality (e.g. Hubmer et al., 2021;
Kaymak et al., 2022). However, counterfactual M1 in Table 4 generates only a moderate drop
in the stationary top 10% wealth share. This discrepancy relates to a difference in the un-
derlying counterfactual exercise: existing studies shut down labor income inequality for both
households and entrepreneurs, while I do so only for households. Consequently, in model M1,
the continued presence of entrepreneurs produces significant wealth inequality®.

In a second counterfactual exercise (‘taxation’), I abstract from taxation (‘'model M2’). Sta-
tionary wealth inequality increases by five points relative to the baseline, while short-run and
long-run rank-rank coefficients decline by two points (Table 4, column M2). In other words,
if there were no taxation, both stationary wealth inequality and wealth mobility would obtain
higher values. The impact of taxation on wealth inequality in model M2 is weaker than in
for instance Hubmer et al. (2021), who find that the U.S. tax system is strongly progressive

®To illustrate this point: the aggregate wealth held by entrepreneurs accounts for approximately 60% of total
aggregate wealth in model M1. Instead, in the baseline, this ratio was equal to 35%.
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Table 4: Counterfactual stationary wealth inequality and wealth mobility: labor income
inequality and taxation.

Data Baseline | M1 M2

Wealth inequality
Bottom 50% 0.00 0.03 0.02 0.01
Middle 50-90% 0.23 0.18 031 0.15
Top 10% 0.77 0.79 0.67 0.84
Wealth mobility (short—run)
Short-run p 0.84 0.86 0.60 0.84
Steady wealthy 0.08 0.08 0.06 0.08
Steady poor 0.13 0.13 0.07 0.13
Wealth mobility (long—run)
Long-run p 0.40 0.44 012 0.42
Steady wealthy 0.03 0.04 0.02 0.04
Steady poor 0.09 0.07 0.05 0.07

Note: this table shows the stationary wealth inequality and mobility outcomes for two counterfactuals. M1 repre-
sents the counterfactual for labor income inequality, M2 the counterfactual for taxation. The column "Data’ shows
the wealth inequality and wealth mobility outcomes in the empirical data, as outlined in Section 3.3. The column
"Baseline” shows the baseline model outcomes from Table 3. The models have been calibrated using the external
calibration described in Section 5.1, and the internal calibration strategy from Section 5.2.
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and lowers the top 10% wealth share by a little over twenty points. The divergence between
both models suggests that the NBER tax simulator (as outlined in Section 3.1) may not entirely
capture the progressivity of the U.S. tax system. This could relate to the exclusion of corporate
income taxes and estate taxes in the NBER tax simulator program. I leave a more detailed
modeling of the U.S. tax system to future research.

6.2 Saving ratio inequality

In what follows, I shut down various components of saving ratio inequality. I distinguish
between saving ratio type dependence, saving ratio scale dependence and overall saving ratio
heterogeneity. The results are displayed in Table 5.

In a first step ("type dependence’), I eliminate saving ratio type dependence (‘'model M3.a"): the
type-dependent saving ratio term is set to O for all agents i: e?f = 0 Vi, t. While counterfactual
wealth inequality is roughly identical to baseline wealth inequality, wealth mobility increases:
the long-run rank-rank coefficient declines to 0.37 (compared to 0.44 in the baseline). This
mobility effect is driven entirely by higher wealth mobility at the bottom of the wealth dis-
tribution. In any case, this result is (at first glance) at odds with the conclusion from Section
4.4: in that section, the presence of type dependence was found to generate higher (rather than
lower) wealth mobility. However, the theoretical insight from Section 4.4 was derived under
the assumption of identical saving ratio inequality.

On the contrary, model M3.a abstracted from type dependence, but kept the baseline scale-
dependent function f? (with ¢ = 0.04) that was estimated in an environment with both type
dependence and scale dependence. This means that in model M3.a, saving ratio inequality
is significantly lower than the inequality from the baseline case: in the baseline model, part
of the high saving ratios at the top reflect the saving behavior of high-type agents, with the
opposite holding at the bottom. In response to this, I re-estimate the preference for wealth ¢
to match empirical saving ratio inequality in a model without saving ratio type dependence
(‘'model M3.b’). This leads to ¢ = 0.05. The top 10% wealth share rises somewhat (0.83 in M3.b
compared to 0.79 in the baseline), while long-run wealth mobility declines strongly: the long-
run rank-rank coefficient amounts to 0.61, compared to 0.44 in the baseline. In summary, the
presence of saving ratio type dependence for given levels of saving ratio inequality generates
significantly higher wealth mobility in the stationary model state.

In a second step (“preference for wealth’), I shut down the preference for wealth component:
@ = 0. This changes the curvature of the scale-dependent function f? in a non-linear way, but
does not eliminate saving ratio scale dependence entirely. I distinguish between two models.
On the one hand, model M4.a keeps the baseline type-dependent structure. Compared to the
baseline model, M4.a leads to a slightly higher top 10% wealth share (0.83 versus 0.79) and
significantly higher wealth mobility (0.32 compared to 0.44). On the other hand, model M4.b
re-estimates the type-dependent structure using the PSID-sample. The top 10% wealth share
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Table 5: Counterfactual stationary wealth inequality and wealth mobility: saving ratio in-
equality.

| Data Baseline | M3.a M3.b M4a M4b M5a M5b Mé
Wealth inequality
Bottom 50% 0.00 0.03 0.03 003 002 002 017 017 0.17
Middle 50-90% 0.23 0.18 020 015 015 017 036 036 0.37
Top 10% 0.77 0.79 077 083 083 081 047 047 047
Wealth mobility (short—run)
Short-run 0.84 0.86 081 094 076 076 071 071 0.67
Steady wealthy 0.08 0.08 0.08 009 008 0.08 0.06 006 0.06
Steady poor 0.13 0.13 011 016 009 009 011 011 0.11
Wealth mobility (long—run)
Long-run j 0.40 0.44 037 061 032 033 031 031 029
Steady wealthy 0.03 0.04 0.04 006 004 004 002 003 0.02
Steady poor 0.09 0.07 0.07 009 006 006 0.07 007 0.07

Note: this table presents stationary wealth inequality and mobility outcomes under four counterfactual scenarios
targeting saving ratio heterogeneity. Model M3 removes type dependence in saving behavior, M4 shuts down the
preference for wealth in the utility function (Equation 37), M5 eliminates scale dependence in saving ratios, and
M6 removes all forms of saving ratio heterogeneity. Models labeled with ".a” retain the calibration structure of the
baseline model, while models labeled with ".b” are re-estimated using the internal strategy described in Section 5.2,
conditional on the respective counterfactual assumptions. Model M6 combines the external calibration strategy
outlined in Section 5.1 with the internal procedure of Section 5.2. The ‘data’ column displays empirical outcomes
as discussed in Section 3.3, and the "baseline’ column reports results from the benchmark model shown in Table 3.
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still exceeds the baseline (at 0.81), while long-run wealth mobility increases significantly to
above the baseline (at 0.32). The presence of a preference for wealth component (¢ > 0) thus
slightly lowers wealth inequality, and lowers wealth mobility outcomes.

In a third step ('scale dependence’), I abstract from scale dependence altogether: the saving
ratio scale-dependent function is set to the median saving ratio in the 2001-2021 PSID-sample
(f® = 0.56). I again distinguish between two models: a model maintaining the baseline type-
dependent structure (‘'model M5.a’), and a model that re-estimates it (‘'model M5.b"). These
models yield identical wealth inequality and mobility outcomes: the absence of saving ratio
scale dependence significantly lowers top 10% wealth shares (at 0.47). Moreover, short-run
and long-run wealth mobility increase: the short-run rank-rank coefficient declines to 0.71
(versus 0.86 in the baseline) and the long-run one to 0.31 (compared to 0.44 in the baseline).
Overall, the presence of scale dependence raises wealth inequality and lowers wealth mobility
outcomes.

In a fourth step (“all heterogeneity’), I abstract from all structural saving ratio heterogeneity:
s?/t =0 Vi, tand f% = 0.56 (model M6). The top 10% wealth share drops to the same level as
in models M5.a and M5.b (at 0.47). Moreover, short-run and long-run wealth mobility rise to
their highest level across all saving ratio counterfactuals: the short-run rank-rank coefficient
equals 0.67 (compared to 0.86 in the baseline), and the long-run rank-rank coefficient amounts
to0 0.29 (compared to 0.44 in the baseline). Through the interplay of type dependence and scale
dependence, structural heterogeneity in saving ratios thus raises U.S. wealth inequality, and
lowers wealth mobility.

Implications The saving ratio inequality counterfactuals have three key implications. First,
the linkage between scale-dependent functions and type-dependent structure is often critical
for stationary model outcomes: imposing an alternative scale-dependent function without re-
calibrating the type-dependent structure from the data (or vice versa) can yield outcomes that
are at odds compared to when the re-calibration is executed. Second, as noted, saving ratio
type dependence raises wealth mobility (M3.b), while saving ratio scale dependence leads to
higher wealth inequality and lower wealth mobility (M5). Overall structural saving ratio het-
erogeneity generates higher wealth inequality and significantly lower wealth mobility (M6).
For wealth mobility, the saving ratio scale dependence effect therefore appears to dominate
over the type dependence effect, although this may relate also to the interaction behind wealth
inequality and wealth mobility. Third, linking scale-dependent functions with a realistic type-
dependent structure is critical in matching wealth mobility outcomes: when maintaining re-
alistic saving ratio inequality, the absence of saving ratio type dependence yields a stationary
model state where wealth mobility significantly understates its empirical counterpart (M3.b).
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6.3 Household asset allocation, participation & returns

Inow turn to the counterfactual analyses for various components of household asset allocation,
asset participation and asset returns. The results are displayed in Table 6.

In a first counterfactual ("portfolio allocation’), I remove all structural heterogeneity in equity
portfolio allocation a® and housing portfolio allocation & (‘'model M7’). More precisely, these
variables are for all households set to the median levels reported in Van Langenhove (2025c¢):
ae = 0.22 and o, = 0.62 Vi, t. In a second counterfactual (‘entry and exit probabilities’), I ab-
stract from structural heterogeneity in equity and housing entry and exit probabilities (‘'model
M8’): p¢ = 0.15, p° = 0.18, p¢ = 0.18 and p"° = 0.09 Vi, t. Both counterfactual M7 and
M8 generate wealth inequality and wealth mobility outcomes that are largely indistinguish-
able from the baseline model. In a third counterfactual, I eliminate the unequal equity returns
across the wealth (rank) distribution. Wealth inequality declines somewhat to 0.74 (compared
to 0.78 in the baseline), while short-run and long-run wealth mobility each drop two points
relative to the baseline.

What explains the limited impact of these return heterogeneity channels on wealth inequality
and wealth mobility? There are two channels at play. First, the results reflect the interplay
between portfolio allocation to equity and housing: in the stationary model state, allocation to
housing is dominant in the middle part of the wealth distribution, while equity is dominant at
the top. However, the allocation to their composite — 'risky assets” — remains roughly stable
from the middle to the top of the wealth distribution. Second, equity and housing returns were
assumed to follow a normal process as opposed to a lognormal process (Section 3.1, Equations
21 and 22). A normal return process guarantees the existence of a stationary model state and
allows to match first-order empirical moments, as outlined in Section 3.1. The assumption is
also applied in other heterogeneous agent models (e.g. Xavier, 2021). However, a lognormal
return process would right-skew returns and is likely to generate a more substantial impact
of portfolio allocation and participation probability heterogeneity on wealth inequality and
mobility outcomes.

6.4 Wealth inequality and wealth mobility?

Summarizing, the persistence of agents across the wealth (rank) distribution follows from two
key sources in our baseline model. First, labor income inequality is critical in creating long-run
persistence across the wealth (rank) distribution: without it, the long-run rank-rank coefficient
drops to 0.12 from 0.44 in the baseline (model M1). Second, saving ratio heterogeneity is also
important: in the absence of such structural heterogeneity, the long-run rank-rank coefficient
declines to 0.29 (model M6). This reflects two counteracting forces: the presence of saving
ratio scale dependence lowers wealth mobility outcomes, while the presence of saving ratio
type dependence raises wealth mobility. Finally, taxation and return heterogeneity have little
effect on wealth mobility outcomes. However, the lack of such effects may respectively relate
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Table 6: Counterfactual stationary wealth inequality and wealth mobility: portfolio compo-
sition, return schedules and asset participation.

‘Data Baseline | M7 M8 M9

Wealth inequality
Bottom 50% 0.00 0.03 0.03 0.02 0.04
Middle 50-90% 0.23 0.18 019 0.18 0.23
Top 10% 0.77 0.79 079 079 0.74
Wealth mobility (short—run)
Short-run B 0.84 0.86 0.86 0.85 0.84
Steady wealthy 0.08 0.08 0.08 0.08 0.08
Steady poor 0.13 0.13 0.13 0.13 0.13
Wealth mobility (long—run)
Long-run 0.40 0.44 045 042 042
Steady wealthy 0.03 0.04 0.04 0.04 0.04
Steady poor 0.09 0.07 0.07 0.07 0.07

Note: this table reports stationary wealth inequality and mobility outcomes for three counterfactual scenarios
related to household asset allocation, market participation, and asset returns. M7 eliminates portfolio allocation
heterogeneity, M8 shuts down structural heterogeneity in equity and housing entry and exit probabilities, and
M9 removes unequal equity returns across the wealth (rank) distribution. The column "data” shows the wealth
inequality and wealth mobility outcomes in the empirical data, as outlined in Section 3.3. The column "baseline’
shows the baseline model outcomes from Table 3.
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to the simplistic taxation process that was imposed on the model, and to the assumption of
normal as opposed to lognormal returns. I leave an investigation of this to future research.

What do these results imply about the relationship between wealth inequality and wealth mo-
bility in non-simplified heterogeneous agent models? In theory, one would expect a nega-
tive relationship: higher wealth inequality implies a larger absolute distance between agents’
wealth levels, which is anticipated to generate lower wealth mobility insofar as additive wealth
shocks (such as labor income) are important. In general, this inverse relationship holds based
on the counterfactual model exercises, although its magnitude depends on the underlying
channels. More precisely, labor income inequality and saving ratio scale dependence not only
lower wealth mobility outcomes, but also raise wealth inequality significantly. Nonetheless, as
a result of the presence of entrepreneurs, wealth inequality outcomes remain relatively close to
their baseline level. In a model without entrepreneurs, these effects would be more significant.
Also for saving ratio type dependence, the inverse relationship holds, albeit weakly: saving ra-
tio type dependence significantly raises wealth mobility, and lowers the top 10% wealth share
only slightly.

7 Conclusion

While recent theoretical work has proposed several mechanisms that contribute wealth in-
equality, there remains little research linking the inequality of the wealth distribution to its
turnover (i.e. wealth mobility). Moreover, the existing Aiyagari-Bewley—Huggett heteroge-
neous agent literature typically invokes assumptions about type dependence and scale depen-
dence without defining these formally and without estimating the type-dependent and scale-
dependent parameters in an internally consistent way. This paper addresses these research
gaps through four key contributions.

First, I constructed a generalized theoretical framework that embeds the core sources of wealth
inequality underscored in the theoretical literature (labor income risk, saving rate heterogene-
ity, capital income risk, link between returns and wealth). Using this framework, I proposed
a formal definition of type dependence and scale dependence, and defined several theoreti-
cal type dependence (spread and persistence) and scale dependence (spread and curvature)
moments that are of interest.

Second, using a set of simplified heterogeneous agent models, I have shown that the type
dependence versus scale dependence distinction is critical for matching wealth mobility out-
comes: for identical wealth inequality outcomes, type-dependent models generate higher wealth
mobility than scale-dependent ones. This is because type dependence ultimately introduces an
additional source of randomness into the model. In addition, the relationship between wealth
mobility and the scale-dependent and type-dependent parameters is found to be characterized
by non-linearities.
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Third, I have constructed an Aiyagari-Bewley-Huggett economy with type dependence and
scale dependence in which households exhibit non-homothetic preferences and entrepreneurs
are modeled in line with Cagetti & De Nardi (2006). To estimate the type-dependent and scale-
dependent parameters, I outlined a novel estimation strategy that links a theoretical scale-
dependent function to a corresponding, empirically-determined type-dependent structure us-
ing panel data from the PSID. The estimated model was found to replicate well the wealth
inequality and wealth mobility observed in the United States in 2021.

Fourth, I have conducted a series of counterfactual analyses on the estimated baseline model.
These showed that allowing for a realistic degree of saving ratio type dependence is critical in
matching wealth mobility in the stationary model state to its empirical counterpart. Moreover,
labor income inequality and saving ratio inequality were found to be the key driving forces
behind agents’ persistence in the wealth (rank) distribution in both the short-run and the long-
run. Return heterogeneity was found to be less important, though future research should
examine to what extent this finding is driven by the assumption of a normal return process.
Finally, in general, there exists an inverse relationship between wealth inequality and wealth
mobility: higher wealth inequality coincides with lower wealth mobility.
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A State variable processes — visualization

This Appendix visualizes the state variable process paths under the calibration outlined in
Section 3. More precisely, I simulate for each state variable 100 000 trajectories over 100 years,
and rank the outcomes at each time period t. Figure 10 plots the 95th, 75th, 50th, 25th and
5th percentile at each t. For the equity, housing and business return, I plot the value of initial
100-unit investment. Returns represent capital gains only; that is, the fixed return (u¢, u", or
the median business return in I') is subtracted from the total return.

The difference in outcomes for the return processes are quite stark. Specifically, equity returns
yield on average a relatively stable investment path, but imply a small probability of signifi-
cant investment gains. For housing returns, the average path yields a positive return, but the
probability of significant gains is more limited than for equity. Finally, business returns also
imply a relatively stable average scenario. However, they stand out by a small probability of
significant reversals of fortune: in the 5% most favorable scenarios, the 100-unit investment
has turned into a six-figure investment after 100 years.
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Figure 10: State variable paths under the parameter calibration of Section 3.1.
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Note: the plots show the outcomes of 100 000 Monte Carlo simulations for the labor income process (a), equity
return process (b), housing return process (c) and business return process (d). The return processes represent
capital gains only: the fixed return has been subtracted from the total return. The asset value outcomes depart
from a 100-unit initial value.
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B Type dependence theoretical moments — saving ratio dispersion
across the wealth (rank) distribution

Figure 11: Type dependence spread for a given type dependence persistence of p’ = 0.75
and resulting saving ratio data patterns (solid line).

(@) AE = 0.005. (b) A)e = 0.01.

1.0 1.0
0.9 0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0 0.0
1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
Wealth Decile Wealth Decile

(c) A)e = 0.015. (d) Ae = 0.02.
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Note: the solid line shows the median saving ratio per wealth decile in the simulation data, while the bars represent
the inter-quartile range of the simulated saving ratio per wealth decile. The dotted line denotes the scale-dependent
saving ratio function f? that was imposed on the model. The simulations take as given the saving ratio type
dependence persistence: p? = 0.75. All models depart from the simplified framework outlined in Section 4.1.
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Figure 12: Type dependence persistence p for a given type dependence spread of A(1)? = 0.04
and resulting saving ratio data patterns (solid line).

(@) p = 0.10. (b) p = 0.40.
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(©) p = 0.70. (d) p = 0.99.

1.0
0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 X
1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
Wealth Decile Wealth Decile

Note: the solid line shows the median saving ratio per wealth decile in the simulation data, while the bars represent
the inter-quartile range of the simulated saving ratio per wealth decile. The dotted line denotes the scale-dependent
saving ratio function f? that was imposed on the model. The simulations take as given the saving ratio type
dependence spread: A()? = 0.04. All models depart from the simplified framework outlined in Section 4.1.
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C Baseline model — additional visualizations

Figure 13: Outcomes across the wealth (rank) distribution in the baseline model (solid line)
and in the data (dotted line).
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Note: the solid line shows the median outcome variable per wealth decile d in the stationary state of the baseline
model. The dotted line shows the median for that outcome variable computed from the empirical data. For the
share of entrepreneurs (a), asset participation (c-d) and portfolio allocation (e-f), the empirical data was taken from
Van Langenhove (2025c¢). For the saving ratios (b), it was taken from Van Langenhove (2025b).
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Conclusion

The Aiyagari-Bewley-Huggett heterogeneous agent macro literature is faced with two prin-
cipal shortcomings. First, existing models of the U.S. wealth distribution focus exclusively
on replicating wealth inequality, without accounting for wealth mobility. Second, while the
heterogeneous agent models rely on both type dependence and scale dependence, these con-
cepts are used loosely: no formal definition is provided, their implications for various model
outcomes are left unexamined, and the importance of the dependence for wealth mobility is
currently unexplored.

Addressing these shortcomings entails multiple challenges. In particular, there exists no ex-
tensive wealth mobility data for the United States, or empirical evidence on saving behav-
ior across the wealth (rank) distribution. Furthermore, the literature does not provide an ex-
plicit, formal definition of type dependence and scale dependence, and has not yet proposed
a strategy to consistently estimate the type- and scale-dependent parameters of a heteroge-
neous agent model. In this dissertation, I have taken critical steps forward in tackling these
challenges, thereby addressing the two principal shortcomings of the literature.

In Chapter 1, I leveraged data from the Panel Study of Income Dynamics (PSID) to analyze
inter- and intra-generational wealth mobility in the United States. I provided a rich set of em-
pirical stylized facts relevant to the macroeconomic modeling of the U.S. wealth distribution. I
demonstrated that both overall inter-generational wealth mobility and intra-generational mo-
bility at the top have declined over time, and that wealth mobility in the United States is lower
than in most other countries for which comparable data are available. Moreover, I found ev-
idence of positive interdependence between individuals” wealth rank trajectories and those
of their parents over the same historical time period. In addition, I investigated the sources
of inter- and intra-generational wealth mobility in the United States, showing that variation
in inter-generational transfers, business ownership, labor income, health and non-mortgage
indebtedness are critical determinants of mobility.

In Chapter 2, I used household-level data from the Panel Study of Income Dynamics (PSID) to
provide evidence on saving behavior across the wealth (rank) distribution in the United States.
I estimated saving rates across wealth deciles using two complementary approaches: the cross-
sectional method and the aggregate method. I obtained four collections of stylized empirical
facts. First, I found that total saving rates out of labor income and new resources rise with
wealth ranks (flow-based saving rates). In contrast, total saving rates out of wealth and com-
posite resources are roughly stable or moderately increasing with wealth ranks (stock-based
saving rates). Second, wealth (rank) mobility has a substantial impact on total saving rate
patterns across the wealth distribution. However, while the contribution of wealth mobility is
strictly positive for the cross-sectional method, it is negative across most of the wealth distribu-
tion for the aggregate method. I show that this discrepancy relates to these methods” distinct
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treatment of wealth (rank) mobility: while the cross-sectional method attaches equal weight to
all households in a wealth decile, the aggregate method overweighs households that display
downward wealth mobility. Third, I found that the synthetic method (which is commonly
used in the absence of panel data) overestimates saving rates up to the 80th percentile, while
it underestimates the saving rates of the top 20%. Fourth, I demonstrated that households’
reliance on capital gains rises across the wealth rank distribution: the top wealthiest house-
holds’ total saving consists predominantly of saving by holding appreciating assets. Passive
saving out of inter-generational transfers is more common for wealthier households, but rela-
tively unimportant in magnitude. Many of the empirical saving behavior moments across the
wealth (rank) distribution reported in this Chapter are likely of interest to the heterogeneous
agent literature replicating the U.S. wealth distribution.

In Chapter 3, I have used heterogeneous agent models reliant on both type dependence and
scale dependence to jointly study wealth inequality and wealth mobility in the United States.
First, the chapter outlined a generalized theoretical framework that formally defined type
dependence and scale dependence. Second, using a set of simplified heterogeneous agent
models, I demonstrated that the type dependence versus scale dependence distinction is crit-
ical for matching wealth mobility outcomes: for identical wealth inequality outcomes, type-
dependent models generate higher wealth mobility than scale-dependent ones. Third, I con-
structed an Aiyagari-Bewley-Huggett economy populated by households and entrepreneurs,
and with both type dependence and scale dependence in parameters and decision variables.
To estimate the type-dependent and scale-dependent parameters, I outlined a novel estima-
tion strategy that links a theoretical scale-dependent function to a corresponding empirically-
determined type-dependent structure using panel data from the PSID. The estimated model
replicates well the wealth inequality and wealth mobility observed in the United States in 2021.
Fourth, I conducted a series of counterfactual analyses on the estimated baseline model. These
showed that allowing for a realistic degree of saving ratio type dependence is critical in match-
ing wealth mobility in the stationary model state to its empirical counterpart. Moreover, labor
income inequality and saving ratio inequality emerge as the key driving forces behind agents’
persistence in the wealth (rank) distribution in both the short-run and the long-run. Return
heterogeneity was found to be less important, although this may relate to specific model as-
sumptions. Finally, in general, there exists an inverse relationship between wealth inequality
and wealth mobility: higher wealth inequality coincides with lower wealth mobility.

These three chapters provide a response to the six broader research questions raised in the
Introduction to this PhD dissertation. First, I found a negative relationship between U.S.
wealth inequality and wealth mobility empirically: while wealth inequality has risen, inter-
and intra-generational wealth mobility have declined over time. A similar inverse relation-
ship was also found to hold theoretically. Second, I found labor income inequality and saving
rate inequality to be the core determinants behind U.S. wealth inequality. These were also the
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main drivers of reduced turnover (and hence lower mobility) across the wealth distribution.
Return heterogeneity is of less importance, although this finding warrants further research.
Third, as noted, U.S. wealth mobility has declined over time, and is in general lower com-
pared to other countries with available data. Fourth, type dependence is critical in generating
realistic wealth mobility outcomes: without it, wealth mobility in the stationary model state
is lower than its empirical counterpart. Heterogeneous agent models that aim to match U.S.
wealth mobility outcomes should therefore rely on a realistic degree of type dependence and
scale dependence. Fifth, the model-based estimation of type-dependent and scale-dependent
parameters suggested that both type and scale dependence are relevant. In other words, het-
erogeneity in wealth outcomes across U.S. households arises from both structural differences in
households’ saving and portfolio allocation behavior (ex-ante heterogeneity) and from ‘wealth
begets wealth” dynamics (ex-post heterogeneity). Sixth, there exists an overall positive re-
lationship between saving behavior and wealth ranks: saving rates are higher for wealthier
households. However, the magnitude of the effect depends on the saving rate considered: sav-
ing rates out of labor income and new resources are significantly higher at the top compared
to the bottom, while the difference for saving rates out of composite resources is more mini-
mal. On the contrary, saving rates out of wealth are relatively stable across the wealth rank
distribution.

Societal and policy implications What are the implications of the findings of this PhD for
societal and policy debates? I outline several key points.

First, the dissertation stresses the importance of connecting policy debates on wealth inequal-
ity to the degree of wealth mobility: high wealth inequality might be more problematic when
it coincides with low wealth mobility. For the United States, Chapter 1 demonstrated that the
rising U.S. wealth inequality since the beginning of the 1980s has coincided with declining
U.S. wealth mobility, particularly at the top. Moreover, wealth inequality in the United States
is higher and wealth mobility lower compared to other countries with available data. This sug-
gests that the negative externalities associated with high wealth inequality — such as political
capture and weakening of political institutions, social fragmentation and unrest, unequal ac-
cess to healthcare, and underinvestment in human capital — are more likely to materialize in
the United States. It also suggests that a return to the Gilded Age, as predicted by Thomas
Piketty and others, is not a dystopian scenario but a plausible outcome.

Second, Chapter 3 of the dissertation introduces a distinction between type dependence and
scale dependence. Furthermore, it introduces a method to estimate type-dependent and scale-
dependent parameters in a heterogeneous agent model. The distinction between type depen-
dence and scale dependence has strong implications regarding the nature of wealth inequality.
Type dependence relates the inequality to ex-ante differences across agents — some agents are
simply more frugal or better investors than others. On the contrary, scale dependence traces
the inequality to ex-post differences across agents — the wealthy become wealthier simply
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because their wealth creates conditions that are more favorable to additional wealth accumu-
lation. Scale dependencies are generally classified as unjust: why should wealthier agents
operate under conditions more favorable to wealth accumulation compared to poorer agents?
Strikingly, the model estimation in the second part of Chapter 3 suggests that such scale de-
pendence is a key driver of U.S. wealth inequality. This raises doubts on the degree of equal
opportunity for wealth accumulation in U.S. society.

Overall, these two points draw a picture of a highly unequal and immobile U.S. wealth distri-
bution relative to other developed countries. In addition, this high wealth inequality and low
wealth mobility appear to have worsened over time. In the absence of a clear policy shift, and
in the light of the aforementioned negative externalities materializing further, it seems likely
that these trends will persist in the future. So what can be done about it? While the present dis-
sertation did not conduct direct policy analyses, it does produce two main policy suggestions,
which I discuss next.

On the one hand, the counterfactual model analyses in Chapter 3 demonstrated the importance
of labor income inequality in driving long-run wealth mobility. There exists extensive evidence
that labor income inequality in the U.S. has increased in the decades prior to the financial
crisis, especially at the top of the distribution. Insofar as U.S. policymakers are interested in
lowering wealth inequality and raising wealth mobility, curbing labor income inequality is
therefore likely an effective strategy (through e.g. tax reforms). On the other hand, both in the
empirical data of Chapter 1 and the theoretical model of Chapter 3, entrepreneurship emerged
as a key driver of upward wealth mobility. Creating conditions where entrepreneurship is
accessible across the entire population — regardless of initial wealth level, gender and race —
therefore seems critical in allowing for turnover in and promoting dynamism across the U.S.
wealth distribution. This is especially important given the decline in intra-generational wealth
mobility towards the top 10% of the wealth distribution obtained in Chapter 1.

This PhD dissertation focused entirely on the United States, but what about Europe? Do the
same societal and policy implications hold here? In general, European societies are less un-
equal than American ones. Unfortunately, with the exception of the Nordic countries, Euro-
pean countries have no panel data available over sufficiently long time horizons to investigate
wealth mobility in these economies. This makes it hard to make statements about the turnover
of families and individuals in European countries” wealth distributions. As a result, while
some key points of this dissertation — e.g. the importance of wealth mobility when discussing
wealth inequality, the conceptual distinction between type dependence and scale dependence
— are also relevant for European countries, the absence of extensive data makes it harder to
quantify the trends.

Future research This dissertation also opens several directions for future research. I elaborate
on four of the most interesting avenues.
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First, as noted, while the PSID can be used to study the relatively broad group of top 10%
wealthiest, it does not capture the tail of the U.S. wealth distribution very well. This is unfor-
tunate, as it is in fact tail wealth inequality that has risen the strongest over the past decades in
the United States. Future research should therefore be concerned with quantifying the degree
of wealth mobility and the saving behavior among the wealthiest households at the very top
(top 1% and beyond).

Second, Chapter 1 showed that U.S. wealth inequality is high relative to most other countries,
while its wealth mobility is relatively low. An interesting avenue for future research is to
examine where other countries with available wealth mobility data are located on the wealth
inequality—wealth mobility spectrum. It would then also be worthwhile to explain these cross-
country differences in a theoretical model. Do the differences relate to diverging labor income
inequality levels, entrepreneurship, household formation dynamics, or portfolio allocation and
return heterogeneity?

Third, Chapter 3 focused on jointly replicating U.S. wealth inequality and U.S. wealth mobility
at a given point in time, for 2021. For future research, it would be worthwhile to investigate
what drove the simultaneous increase in U.S. wealth inequality and decline in U.S. wealth
mobility. While I found only a limited contribution of portfolio allocation and return hetero-
geneity to stationary state wealth inequality and wealth mobility, such heterogeneity may be
more important in inducing short-run or medium-run wealth inequality and wealth mobility
fluctuations.

Fourth, to investigate further the probability of returning to a Gilded Age period, it is worth-
while connecting the discussion on wealth inequality and wealth mobility to the debate on the
role of inter-generational transfers. From an empirical perspective, the PSID could be used
to investigate the importance of inter-generational transfers across the wealth (rank) distri-
bution in the United States. From a theoretical viewpoint, the heterogeneous agent models
constructed in Chapter 3 could be extended to an overlapping-generations framework to in-
corporate inter-generational transfers.
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